A Note on Proton Stability in the Standard Model
Abstract
:Earlier Work
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertlmann, R.A. Anomalies in Quantum Field Theory; Oxford University Press Inc.: New York, NY, USA, 1996. [Google Scholar]
- Fujikawa, K. Path Integral Measure for Gauge Invariant Fermion Theories. Phys. Rev. Lett. 1979, 42, 1195–1198. [Google Scholar] [CrossRef]
- Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 1969, 177, 2426–2438. [Google Scholar] [CrossRef]
- Bell, J.S.; Jackiw, R. A PCAC puzzle: π0→γγ in the σ model. Nuovo Cim. A 1969, 60, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Atiyah, M.F.; Singer, I.M. The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc. 1963, 69, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, K. Path Integral for Gauge Theories with Fermions. Phys. Rev. D 1980, 21, 2848. [Google Scholar] [CrossRef]
- Morrissey, D.E.; Tait, T.M.P.; Wagner, C.E.M. Proton lifetime and baryon number violating signatures at the CERN LHC in gauge extended models. Phys. Rev. D 2005, 72, 095003. [Google Scholar] [CrossRef] [Green Version]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 1985, 155, 36. [Google Scholar] [CrossRef]
- Shaposhnikov, M.E. Baryon Asymmetry of the Universe in Standard Electroweak Theory. Nucl. Phys. B 1987, 287, 757–775. [Google Scholar] [CrossRef]
- Manton, N.S. Topology in the Weinberg-Salam Theory. Phys. Rev. D 1983, 28, 2019. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Manton, N.S. A Saddle Point Solution in the Weinberg-Salam Theory. Phys. Rev. D 1984, 30, 2212. [Google Scholar] [CrossRef]
- Ibanez, L.E.; Ross, G.G. Discrete gauge symmetry anomalies. Phys. Lett. B 1991, 260, 291–295. [Google Scholar] [CrossRef]
- Ibanez, L.E.; Ross, G.G. Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model. Nucl. Phys. B 1992, 368, 3–37. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, L.E. More about discrete gauge anomalies. Nucl. Phys. B 1993, 398, 301–318. [Google Scholar] [CrossRef] [Green Version]
- Hinchliffe, I.; Kaeding, T. B+L violating couplings in the minimal supersymmetric Standard Model. Phys. Rev. D 1993, 47, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Kubo, J.; Suematsu, D. Suppressing the mu and neutrino masses by a superconformal force. Phys. Rev. D 2001, 64, 115014. [Google Scholar] [CrossRef] [Green Version]
- Dreiner, H.K.; Luhn, C.; Thormeier, M. What is the discrete gauge symmetry of the MSSM? Phys. Rev. D 2006, 73, 075007. [Google Scholar] [CrossRef] [Green Version]
- Dreiner, H.K.; Luhn, C.; Murayama, H.; Thormeier, M. Baryon triality and neutrino masses from an anomalous flavor U(1). Nucl. Phys. B 2007, 774, 127–167. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Luhn, C.; Matchev, K.T. Discrete gauge symmetries and proton stability in the U(1)-prime—Extended MSSM. J. High Energy Phys. 2008, 7, 65. [Google Scholar]
- Luhn, C.; Thormeier, M. Dirac neutrinos and anomaly-free discrete gauge symmetries. Phys. Rev. D 2008, 77, 056002. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S. Minimal gauge origin of baryon triality and flavorful signatures at the LHC. Phys. Lett. B 2011, 704, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Anastasopoulos, P.; Richter, R.; Schellekens, A.N. Discrete symmetries from hidden sectors. J. High Energy Phys. 2015, 06, 189. [Google Scholar] [CrossRef] [Green Version]
- Banks, T.; Dine, M. Note on discrete gauge anomalies. Phys. Rev. D 1992, 45, 1424–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preskill, J.; Trivedi, S.P.; Wilczek, F.; Wise, M.B. Cosmology and broken discrete symmetry. Nucl. Phys. B 1991, 363, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Csaki, C.; Murayama, H. Discrete anomaly matching. Nucl. Phys. B 1998, 515, 114–162. [Google Scholar] [CrossRef] [Green Version]
- Dine, M. Supersymmetry and String Theory: Beyond the Standard Model; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Araki, T.; Kobayashi, T.; Kubo, J.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S. (Non-)Abelian discrete anomalies. Nucl. Phys. B 2008, 805, 124–147. [Google Scholar] [CrossRef] [Green Version]
- Berasaluce-Gonzalez, M.; Ibanez, L.E.; Soler, P.; Uranga, A.M. Discrete gauge symmetries in D-brane models. J. High Energy Phys. 2011, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.L.; Ibe, M.; Kehayias, J.; Yanagida, T.T. Nonanomalous Discrete R Symmetry Decrees Three Generations. Phys. Rev. Lett. 2012, 109, 181801. [Google Scholar] [CrossRef] [Green Version]
- Tachikawa, Y. On gauging finite subgroups. SciPost Phys. 2020, 8, 15. [Google Scholar] [CrossRef]
- Kobayashi, T.; Uchida, H. Anomaly of non-Abelian discrete symmetries. Phys. Rev. D 2022, 105, 036018. [Google Scholar] [CrossRef]
- Anber, M.M.; Poppitz, E. Nonperturbative effects in the Standard Model with gauged 1-form symmetry. J. High Energy Phys. 2021, 12, 55. [Google Scholar] [CrossRef]
- Davighi, J.; Greljo, A.; Thomsen, A.E. Leptoquarks with Exactly Stable Protons. arXiv 2022, arXiv:hep-ph/2202.05275. [Google Scholar]
- Tong, D. Line Operators in the Standard Model. J. High Energy Phys. 2017, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Byakti, P.; Ghosh, D.; Sharma, T. Note on gauge and gravitational anomalies of discrete ZN symmetries. J. High Energy Phys. 2018, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wan, Z.; You, Y.Z. Proton Stability: From the Standard Model to Ultra Unification. arXiv 2022, arXiv:hep-ph/2204.08393. [Google Scholar]
3 | – | – | |||
2 | – | – | 2 | – | |
– | – | ||||
– | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koren, S. A Note on Proton Stability in the Standard Model. Universe 2022, 8, 308. https://doi.org/10.3390/universe8060308
Koren S. A Note on Proton Stability in the Standard Model. Universe. 2022; 8(6):308. https://doi.org/10.3390/universe8060308
Chicago/Turabian StyleKoren, Seth. 2022. "A Note on Proton Stability in the Standard Model" Universe 8, no. 6: 308. https://doi.org/10.3390/universe8060308
APA StyleKoren, S. (2022). A Note on Proton Stability in the Standard Model. Universe, 8(6), 308. https://doi.org/10.3390/universe8060308