# A Note on Proton Stability in the Standard Model

## Abstract

**:**

## Earlier Work

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Bertlmann, R.A. Anomalies in Quantum Field Theory; Oxford University Press Inc.: New York, NY, USA, 1996. [Google Scholar]
- Fujikawa, K. Path Integral Measure for Gauge Invariant Fermion Theories. Phys. Rev. Lett.
**1979**, 42, 1195–1198. [Google Scholar] [CrossRef] - Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev.
**1969**, 177, 2426–2438. [Google Scholar] [CrossRef] - Bell, J.S.; Jackiw, R. A PCAC puzzle: π
^{0}→γγ in the σ model. Nuovo Cim. A**1969**, 60, 47–61. [Google Scholar] [CrossRef] [Green Version] - Atiyah, M.F.; Singer, I.M. The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc.
**1963**, 69, 422–433. [Google Scholar] [CrossRef] [Green Version] - Fujikawa, K. Path Integral for Gauge Theories with Fermions. Phys. Rev. D
**1980**, 21, 2848. [Google Scholar] [CrossRef] - Morrissey, D.E.; Tait, T.M.P.; Wagner, C.E.M. Proton lifetime and baryon number violating signatures at the CERN LHC in gauge extended models. Phys. Rev. D
**2005**, 72, 095003. [Google Scholar] [CrossRef] [Green Version] - Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B
**1985**, 155, 36. [Google Scholar] [CrossRef] - Shaposhnikov, M.E. Baryon Asymmetry of the Universe in Standard Electroweak Theory. Nucl. Phys. B
**1987**, 287, 757–775. [Google Scholar] [CrossRef] - Manton, N.S. Topology in the Weinberg-Salam Theory. Phys. Rev. D
**1983**, 28, 2019. [Google Scholar] [CrossRef] - Klinkhamer, F.R.; Manton, N.S. A Saddle Point Solution in the Weinberg-Salam Theory. Phys. Rev. D
**1984**, 30, 2212. [Google Scholar] [CrossRef] - Ibanez, L.E.; Ross, G.G. Discrete gauge symmetry anomalies. Phys. Lett. B
**1991**, 260, 291–295. [Google Scholar] [CrossRef] - Ibanez, L.E.; Ross, G.G. Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model. Nucl. Phys. B
**1992**, 368, 3–37. [Google Scholar] [CrossRef] [Green Version] - Ibanez, L.E. More about discrete gauge anomalies. Nucl. Phys. B
**1993**, 398, 301–318. [Google Scholar] [CrossRef] [Green Version] - Hinchliffe, I.; Kaeding, T. B+L violating couplings in the minimal supersymmetric Standard Model. Phys. Rev. D
**1993**, 47, 279–284. [Google Scholar] [CrossRef] [PubMed] - Kubo, J.; Suematsu, D. Suppressing the mu and neutrino masses by a superconformal force. Phys. Rev. D
**2001**, 64, 115014. [Google Scholar] [CrossRef] [Green Version] - Dreiner, H.K.; Luhn, C.; Thormeier, M. What is the discrete gauge symmetry of the MSSM? Phys. Rev. D
**2006**, 73, 075007. [Google Scholar] [CrossRef] [Green Version] - Dreiner, H.K.; Luhn, C.; Murayama, H.; Thormeier, M. Baryon triality and neutrino masses from an anomalous flavor U(1). Nucl. Phys. B
**2007**, 774, 127–167. [Google Scholar] [CrossRef] [Green Version] - Lee, H.S.; Luhn, C.; Matchev, K.T. Discrete gauge symmetries and proton stability in the U(1)-prime—Extended MSSM. J. High Energy Phys.
**2008**, 7, 65. [Google Scholar] - Luhn, C.; Thormeier, M. Dirac neutrinos and anomaly-free discrete gauge symmetries. Phys. Rev. D
**2008**, 77, 056002. [Google Scholar] [CrossRef] [Green Version] - Lee, H.S. Minimal gauge origin of baryon triality and flavorful signatures at the LHC. Phys. Lett. B
**2011**, 704, 316–321. [Google Scholar] [CrossRef] [Green Version] - Anastasopoulos, P.; Richter, R.; Schellekens, A.N. Discrete symmetries from hidden sectors. J. High Energy Phys.
**2015**, 06, 189. [Google Scholar] [CrossRef] [Green Version] - Banks, T.; Dine, M. Note on discrete gauge anomalies. Phys. Rev. D
**1992**, 45, 1424–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Preskill, J.; Trivedi, S.P.; Wilczek, F.; Wise, M.B. Cosmology and broken discrete symmetry. Nucl. Phys. B
**1991**, 363, 207–220. [Google Scholar] [CrossRef] [Green Version] - Csaki, C.; Murayama, H. Discrete anomaly matching. Nucl. Phys. B
**1998**, 515, 114–162. [Google Scholar] [CrossRef] [Green Version] - Dine, M. Supersymmetry and String Theory: Beyond the Standard Model; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Araki, T.; Kobayashi, T.; Kubo, J.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S. (Non-)Abelian discrete anomalies. Nucl. Phys. B
**2008**, 805, 124–147. [Google Scholar] [CrossRef] [Green Version] - Berasaluce-Gonzalez, M.; Ibanez, L.E.; Soler, P.; Uranga, A.M. Discrete gauge symmetries in D-brane models. J. High Energy Phys.
**2011**, 12, 113. [Google Scholar] [CrossRef] [Green Version] - Evans, J.L.; Ibe, M.; Kehayias, J.; Yanagida, T.T. Nonanomalous Discrete R Symmetry Decrees Three Generations. Phys. Rev. Lett.
**2012**, 109, 181801. [Google Scholar] [CrossRef] [Green Version] - Tachikawa, Y. On gauging finite subgroups. SciPost Phys.
**2020**, 8, 15. [Google Scholar] [CrossRef] - Kobayashi, T.; Uchida, H. Anomaly of non-Abelian discrete symmetries. Phys. Rev. D
**2022**, 105, 036018. [Google Scholar] [CrossRef] - Anber, M.M.; Poppitz, E. Nonperturbative effects in the Standard Model with gauged 1-form symmetry. J. High Energy Phys.
**2021**, 12, 55. [Google Scholar] [CrossRef] - Davighi, J.; Greljo, A.; Thomsen, A.E. Leptoquarks with Exactly Stable Protons. arXiv
**2022**, arXiv:hep-ph/2202.05275. [Google Scholar] - Tong, D. Line Operators in the Standard Model. J. High Energy Phys.
**2017**, 7, 104. [Google Scholar] [CrossRef] [Green Version] - Byakti, P.; Ghosh, D.; Sharma, T. Note on gauge and gravitational anomalies of discrete Z
_{N}symmetries. J. High Energy Phys.**2018**, 1, 15. [Google Scholar] [CrossRef] [Green Version] - Wang, J.; Wan, Z.; You, Y.Z. Proton Stability: From the Standard Model to Ultra Unification. arXiv
**2022**, arXiv:hep-ph/2204.08393. [Google Scholar]

**Table 1.**Representations of the SM Weyl fermions under the classical symmetries of the SM. We normalize each $U\left(1\right)$ so the least-charged particle has unit charge $B\equiv 3{B}_{\mathrm{usual}}$, $Y\equiv 6{Y}_{\mathrm{usual}}$, and $L\equiv {L}_{\mathrm{usual}}$.

$\phantom{\rule{1.em}{0ex}}\mathit{Q}\phantom{\rule{1.em}{0ex}}$ | $\phantom{\rule{1.em}{0ex}}\overline{\mathit{u}}\phantom{\rule{1.em}{0ex}}$ | $\phantom{\rule{1.em}{0ex}}\overline{\mathit{d}}\phantom{\rule{1.em}{0ex}}$ | $\phantom{\rule{1.em}{0ex}}\mathit{L}\phantom{\rule{1.em}{0ex}}$ | $\phantom{\rule{1.em}{0ex}}\overline{\mathit{e}}\phantom{\rule{1.em}{0ex}}$ | |
---|---|---|---|---|---|

$SU{\left(3\right)}_{C}$ | 3 | $\overline{3}$ | $\overline{3}$ | – | – |

$SU{\left(2\right)}_{L}$ | 2 | – | – | 2 | – |

$U{\left(1\right)}_{Y}$ | $+1$ | $-4$ | $+2$ | $-3$ | $+6$ |

$U{\left(1\right)}_{B}$ | $+1$ | $-1$ | $-1$ | – | – |

$U{\left(1\right)}_{L}$ | – | – | – | $+1$ | $-1$ |

**Table 2.**Mixed anomalies of the classical accidental symmetries with the chiral gauge symmetries of the SM. ${N}_{c}$ is the number of colors, and ${N}_{g}$ is the number of generations.

$\mathit{U}{\left(1\right)}_{\mathit{B}}$ | $\mathit{U}{\left(1\right)}_{\mathit{L}}$ | |
---|---|---|

$SU{\left(2\right)}_{L}^{2}$ | ${N}_{c}{N}_{\mathrm{g}}$ | ${N}_{\mathrm{g}}$ |

$U{\left(1\right)}_{Y}^{2}$ | $-18{N}_{c}{N}_{\mathrm{g}}$ | $-18{N}_{\mathrm{g}}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Koren, S.
A Note on Proton Stability in the Standard Model. *Universe* **2022**, *8*, 308.
https://doi.org/10.3390/universe8060308

**AMA Style**

Koren S.
A Note on Proton Stability in the Standard Model. *Universe*. 2022; 8(6):308.
https://doi.org/10.3390/universe8060308

**Chicago/Turabian Style**

Koren, Seth.
2022. "A Note on Proton Stability in the Standard Model" *Universe* 8, no. 6: 308.
https://doi.org/10.3390/universe8060308