Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays
Abstract
:1. Introduction
2. The Model of Cosmic Rays Propagation
2.1. Spatially Dependent Diffusion
2.2. Nearby Source
3. Anisotropic Diffusion and Large-Scale Anisotropy
3.1. Anisotropic Diffusion
3.2. Large-Scale Anisotropy
4. Results and Discussion
4.1. The Energy Spectra of Different Primary CR Components
4.2. Anisotropy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Baade, W.; Zwicky, F. Cosmic Rays from Super-Novae. Proc. Natl. Acad. Sci. USA 1934, 20, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, M.; Tavani, M.; Giuliani, A.E. The origin of Cosmic-Rays from SNRs: Confirmations and challenges after the first direct proof. Nucl. Phys. B Proc. Suppl. 2014, 256–257, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Funk, S. Ground- and Space-Based Gamma-Ray Astronomy. Annu. Rev. Nucl. Part. Sci. 2015, 65, 245–277. [Google Scholar] [CrossRef] [Green Version]
- Dubner, G.; Giacani, E. Radio emission from supernova remnants. Astron. Astrophys. Rev. 2015, 23, 3. [Google Scholar] [CrossRef]
- Hewitt, J.W.; Lemoine-Goumard, M. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies. C. R. Phys. 2015, 16, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Lin, S.-J.; Fang, K.; Bi, X.-J. Propagation of cosmic rays in the AMS-02 era. Phys. Rev. D 2017, 95, 083007. [Google Scholar] [CrossRef] [Green Version]
- Panov, A.D.; Adams, J.H.; Ahn, H.S.; Batkov, K.E.; Bashindzhagyan, G.L.; Watts, J.W.; Wefel, J.P.; Wu, J.; Ganel, O.; Guzik, T.G.; et al. Elemental energy spectra of cosmic rays from the data of the ATIC-2 experiment. Bull. Russ. Acad. Sci. Phys. 2007, 71, 494–497. [Google Scholar] [CrossRef]
- Ahn, H.S.; Allison, P.; Bagliesi, M.G.; Beatty, J.; Bigongiari, G.; Childers, J.T.; Conklin, N.B.; Coutu, S.; Duvernois, M.A.; Ganel, O.; et al. Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys. J. Lett. 2010, 714, L89–L93. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.S.; Ahn, H.S.; Allison, P.S.; Bagliesi, M.G.; Beatty, J.; Bigongiari, G.; Boyle, P.J.; Childers, J.T.; Conklin, N.B.; Coutu, S.; et al. Cosmic-ray proton and helium spectra from the first cream flight. Astrophys. J. 2011, 728, 122. [Google Scholar] [CrossRef] [Green Version]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Borisov, S.; et al. PAMELA measurements of cosmic-ray proton and helium spectra. Science 2011, 332, 6025. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al. Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2015, 115, 211101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bonechi, S.; Bongi, M.; et al. Direct Measurement of the Cosmic-Ray Proton Spectrum from 50 GeV to 10 TeV with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2019, 122, 181102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DAMPE Collaboration; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bi, X.J.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv. 2019, 5, eaax3793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.S.; Anderson, T.; Barrau, A.; Conklin, N.B.; Coutu, S.; Derome, L.; Han, J.H.; Jeon, J.A.; Kim, K.C.; Kim, M.H.; et al. Proton and Helium Spectra from the CREAM-III Flight. Astrophys. J. 2017, 839, 5. [Google Scholar] [CrossRef] [Green Version]
- Atkin, E.; Bulatov, V.; Dorokhov, V.; Gorbunov, N.; Filippov, S.; Grebenyuk, V.; Karmanov, D.; Kovalev, I.; Kudryashov, I.; Kurganov, A.; et al. New Universal Cosmic-Ray Knee near a Magnetic Rigidity of 10 TV with the NUCLEON Space Observatory. J. Exp. Theor. Phys. Lett. 2018, 108, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Amenomori, M.; Ayabe, S.; Bi, X.J.; Chen, D.; Cui, S.W.; Danzengluobu; Ding, L.K.; Ding, X.H.; Feng, C.F.; Feng, Z.; et al. Anisotropy and Corotation of Galactic Cosmic Rays. Science 2006, 314, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Amenomori, M.; Bi, X.J.; Chen, D.; Cui, S.W.; Danzengluobu; Ding, L.K.; Ding, X.H.; Fan, C.; Feng, C.F.; Feng, Z.; et al. On Temporal Variations of The Multi-Tev Cosmic Ray Anisotropy using the Tibet Iii Air Shower Array. Astrophys. J. Lett. 2010, 711, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Amenomori, M.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Cui, S.W.; Danzengluobu; Ding, L.K.; Feng, C.F.; Feng, Z.; et al. Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array. Astrophys. J. 2017, 836, 153. [Google Scholar] [CrossRef] [Green Version]
- Guillian, G.; Hosaka, J.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector. Phys. Rev. D 2007, 75, 062003. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Allen, B.; Aune, T.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Dingus, B.; Ellsworth, R.W.; Fleysher, L.; et al. Discovery of Localized Regions of Excess 10-TeV Cosmic Rays. Phys. Rev. Lett. 2008, 101, 221101. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Allen, B.T.; Aune, T.; Berley, D.; Casanova, S.; Chen, C.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Gonzalez, M.M.; et al. The large-scale cosmic-ray anisotropy as observed with milagro. Astrophys. J. 2009, 698, 2121–2130. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. Measurement of the anisotropy of cosmic-ray arrival directions with icecube. Astrophys. J. Lett. 2010, 718, L194–L198. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; et al. Observation of Anisotropy in The Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube. Astrophys. J. 2011, 740, 16. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.J.; Gizis, J. Discovery of a late l dwarf: Wisep j060738.65+242953.4. Astrophys. J. 2012, 746, 3. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; et al. Observation of cosmic-ray anisotropy with the icetop air shower array. Astrophys. J. 2013, 765, 55. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; et al. Anisotropy in Cosmic-Ray Arrival Directions in The Southern Hemisphere Based on Six Years of Data from The Icecube Detector. Astrophys. J. 2016, 826, 220. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, B.; Bernardini, P.; Bi, X.J.; Bolognino, I.; Branchini, P.; Budano, A.; Melcarne, A.K.C.; Camarri, P.; Cao, Z.; Cardarelli, R.; et al. Medium scale anisotropy in the TeV cosmic ray flux observed by ARGO-YBJ. Phys. Rev. D 2013, 88, 082001. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, B.; Bernardini, P.; Bi, X.J.; Cao, Z.; Catalanotti, S.; Chen, S.Z.; Chen, T.L.; Cui, S.W.; Dai, B.Z.; D’Amone, A.; et al. Argo-Ybj Observation of the Large-Scale Cosmic Ray Anisotropy during The Solar Minimum Between Cycles 23 And 24. Astrophys. J. 2015, 809, 90. [Google Scholar] [CrossRef] [Green Version]
- Abeysekara, A.U.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Solares, H.A.A.; Barber, A.S.; Baughman, B.M.; Bautista-Elivar, N.; et al. Observation of Small-Scale Anisotropy in the Arrival Direction Distribution of Tev Cosmic Rays with Hawc. Astrophys. J. 2014, 796, 108. [Google Scholar] [CrossRef] [Green Version]
- Aglietta, M.; Alekseenko, V.V.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.E.; Bonino, R.; Castellina, A.; Chiavassa, A.; et al. Evolution of the Cosmic-Ray Anisotropy Above 1014 eV. Astrophys. J. 2009, 692, L130–L133. [Google Scholar] [CrossRef] [Green Version]
- Apel, W.D.; Arteaga-Velázquez, J.C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bonino, R.; Bozdog, H.; Brancus, I.M.; Cantoni, E.; Chiavassa, A.; et al. Search for Large-scale Anisotropy in the Arrival Direction of Cosmic Rays with KASCADE-Grande. Astrophys. J. 2019, 870, 91. [Google Scholar] [CrossRef]
- Erlykin, A.; Wolfendale, A. The anisotropy of galactic cosmic rays as a product of stochastic supernova explosions. Astropart. Phys. 2006, 25, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Blasi, P.; Amato, E. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: Spectrum and chemical composition. J. Cosmol. Astropart. Phys. 2012, 2012, 010. [Google Scholar] [CrossRef] [Green Version]
- Funsten, H.O.; DeMajistre, R.; Frisch, P.C.; Heerikhuisen, J.; Higdon, D.M.; Janzen, P.; Larsen, B.A.; Livadiotis, G.; McComas, D.J.; Möbius, E.; et al. Circularity of Theinterstellar Boundary Explorerribbon of Enhanced Energetic Neutral Atom (Ena) Flux. Astrophys. J. 2013, 776, 30. [Google Scholar] [CrossRef] [Green Version]
- Battaner, E.; Castellano, J.; Masip, M. Galactic Magnetic Fields and the Large-Scale Anisotropy at Milagro. Astrophys. J. 2009, 703, L90–L93. [Google Scholar] [CrossRef] [Green Version]
- Ahlers, M. Deciphering the Dipole Anisotropy of Galactic Cosmic Rays. Phys. Rev. Lett. 2016, 117, 151103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlers, M.; Mertsch, P. Origin of small-scale anisotropies in Galactic cosmic rays. Prog. Part. Nucl. Phys. 2017, 94, 184–216. [Google Scholar] [CrossRef] [Green Version]
- Snodin, A.P.; Shukurov, A.; Sarson, G.R.; Bushby, P.J.; Rodrigues, L.F.S. Global diffusion of cosmic rays in random magnetic fields. Mon. Not. R. Astron. Soc. 2016, 457, 3975–3987. [Google Scholar] [CrossRef] [Green Version]
- Schwadron, N.A.; Adams, F.C.; Christian, E.R.; Desiati, P.; Frisch, P.; Funsten, H.O.; Jokipii, J.R.; McComas, D.J.; Moebius, E.; Zank, G.P. Global Anisotropies in TeV Cosmic Rays Related to the Sun’s Local Galactic Environment from IBEX. Science 2014, 343, 988–990. [Google Scholar] [CrossRef] [Green Version]
- Mertsch, P.; Funk, S. Solution to the Cosmic Ray Anisotropy Problem. Phys. Rev. Lett. 2015, 114, 021101. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lin, S.-J.; Hu, H.-B.; Guo, Y.-Q.; Li, A.-F. Two Numerical Methods for the 3D Anisotropic Propagation of Galactic Cosmic Rays. Astrophys. J. 2020, 892, 6. [Google Scholar] [CrossRef] [Green Version]
- Blasi, P.; Amato, E. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: Anisotropy. J. Cosmol. Astropart. Phys. 2012, 2012, 011. [Google Scholar] [CrossRef] [Green Version]
- Sveshnikova, L.; Strelnikova, O.; Ptuskin, V. Spectrum and anisotropy of cosmic rays at TeV–PeV-energies and contribution of nearby sources. Astropart. Phys. 2013, 50–52, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Bi, X.-J.; Lin, S.-J.; Wang, B.-B.; Yin, P.-F. Excesses of cosmic ray spectra from a single nearby source. Phys. Rev. D 2017, 96, 023006. [Google Scholar] [CrossRef] [Green Version]
- Evoli, C.; Gaggero, D.; Grasso, D.; Maccione, L. Common Solution to the Cosmic Ray Anisotropy and Gradient Problems. Phys. Rev. Lett. 2012, 108, 211102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomassetti, N. Origin of the Cosmic-Ray Spectral Hardening. Astrophys. J. 2012, 752, L13. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, Z.; Jin, C. Spatial-dependent Propagation of Cosmic Rays Results in the Spectrum of Proton, Ratios of P/P, and B/C, and Anisotropy of Nuclei. Astrophys. J. 2016, 819, 54. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Yuan, Q.; Liu, W.; Guo, Y. A scenario for the anisotropy of galactic cosmic rays related to nearby source and local interstellar magnetic field. arXiv 2021, arXiv:2107.00313. [Google Scholar]
- Liu, W.; Guo, Y.-Q.; Yuan, Q. Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies. J. Cosmol. Astropart. Phys. 2019, 2019, 010. [Google Scholar] [CrossRef] [Green Version]
- Qiao, B.-Q.; Liu, W.; Guo, Y.-Q.; Yuan, Q. Anisotropies of different mass compositions of cosmic rays. J. Cosmol. Astropart. Phys. 2019, 2019, 007. [Google Scholar] [CrossRef] [Green Version]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.A.; Barber, A.S.; et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 2017, 358, 911–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Guo, Y.; Hu, H.-B. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02. Chin. Phys. C 2016, 40, 015101. [Google Scholar] [CrossRef] [Green Version]
- Tomassetti, N. Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation. Phys. Rev. D 2015, 92, 081301. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Tomassetti, N.; Oliva, A. Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons. Phys. Rev. D 2016, 94, 123007. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yao, Y.-H.; Guo, Y.-Q. Revisiting the Spatially Dependent Propagation Model with the Latest Observations of Cosmic-Ray Nuclei. Astrophys. J. 2018, 869, 176. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Liu, W.; Yang, B.; Fu, X.-D.; Xu, H.-B.; Yao, Y.-H.; Guo, Y.-Q. Electron and positron spectra in three-dimensional spatial-dependent propagation model. Chin. Phys. C 2020, 44, 085102. [Google Scholar] [CrossRef]
- Guo, Y.-Q.; Yuan, Q. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D 2018, 97, 063008. [Google Scholar] [CrossRef] [Green Version]
- Case, G.; Bhattacharya, D. Revisiting the galactic supernova remnant distribution. Astron. Astrophys. Suppl. Ser. 1996, 120, 437–440. [Google Scholar]
- Evoli, C.; Gaggero, D.; Grasso, D.; Maccione, L. Cosmic Ray propagation in the Galaxy and diffuse gamma-ray emission. AIP Conf. Proc. 2008, 1085, 380–383. [Google Scholar] [CrossRef]
- Faherty, J.; Walter, F.M.; Anderson, J. The trigonometric parallax of the neutron star Geminga. Astrophys. Space Sci. 2007, 308, 225–230. [Google Scholar] [CrossRef]
- Giacalone, J.; Jokipii, J.R. The Transport of Cosmic Rays across a Turbulent Magnetic Field. Astrophys. J. 1999, 520, 204–214. [Google Scholar] [CrossRef]
- Cerri, S.S.; Gaggero, D.; Vittino, A.; Evoli, C.; Grasso, D. A signature of anisotropic cosmic-ray transport in the gamma-ray sky. J. Cosmol. Astropart. Phys. 2017, 2017, 019. [Google Scholar] [CrossRef] [Green Version]
- Jokipii, J.R. Cosmic-Ray Propagation I. Charged Particles in a Random Magnetic Field. Astrophys. J. 1966, 146, 480. [Google Scholar] [CrossRef]
- Jokipii, J.R.; Parker, E.N. Random Walk of Magnetic Lines of Force in Astrophysics. Phys. Rev. Lett. 1968, 21, 44–47. [Google Scholar] [CrossRef]
- Casse, F.; Lemoine, M.; Pelletier, G. Transport of cosmic rays in chaotic magnetic fields. Phys. Rev. D. 2001, 65, 023002. [Google Scholar] [CrossRef] [Green Version]
- De Marco, D.; Blasi, P.; Stanev, T. Numerical propagation of high energy cosmic rays in the Galaxy: I. Technical issues. J. Cosmol. Astropart. Phys. 2007, 2007, 027. [Google Scholar] [CrossRef]
- Shalchi, A.; Büsching, I.; Lazarian, A.; Schlickeiser, R. Perpendicular diffusion of cosmic rays for a goldreich-sridhar spectrum. Astrophys. J. Lett. 2010, 725, 2117–2127. [Google Scholar] [CrossRef]
- Battaner, E.; Castellano, J.; Masip, M. Magnetic fields and cosmic-ray anisotropies at tev energies. Astrophys. J. 2015, 799, 157. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2016, 117, 231102. [Google Scholar] [CrossRef]
- Apel, W.; Arteaga-Velázquez, J.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; et al. KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astropart. Phys. 2013, 47, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2017, 119, 251101. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018, 120, 021101. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018, 121, 051103. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Asia, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2015, 114, 171103. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.S.; Allison, P.; Bagliesi, M.G.; Barbier, L.; Beatty, J.; Bigongiari, G.; Brandt, T.J.; Childers, J.T.; Conklin, N.B.; Coutu, S.; et al. Energy spectra of cosmic-ray nuclei at high energies. Astrophys. J. Lett. 2009, 707, 593–603. [Google Scholar] [CrossRef]
- Antoni, T.; Apel, W.D.; Bekk, K.; Badea, A.F.; Bercuci, A.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Chilingarian, A.; Daumiller, K.; et al. KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astropart. Phys. 2005, 24, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, J.J.; Ferrando, P.; Soutoul, A.; Goret, P.; Juliusson, E.; Koch-Miramond, L.; Lund, N.; Masse, P.; Peters, B.; Petrou, N.; et al. Charge composition and energy spectra of cosmic-ray nucleifor elements from Be to Ni. Results from HEAO-3-C2. Astron. Astrophys. 1990, 233, 96–111. [Google Scholar]
- Ave, M.; Boyle, P.J.; Gahbauer, F.; Höppner, C.; Hörandel, J.; Ichimura, M.; Müller, D.; Romero-Wolf, A. Composition of Primary Cosmic-Ray Nuclei at High Energies. Astrophys. J. 2008, 678, 262. [Google Scholar] [CrossRef] [Green Version]
- Gahbauer, F.; Hermann, G.; Hörandel, J.R.; Müller, D.; Radu, A.A. A New Measurement of the Intensities of the Heavy Primary Cosmic-Ray Nuclei around 1 TeV amu−1. Astrophys. J. 2004, 607, 333. [Google Scholar] [CrossRef] [Green Version]
- Obermeier, A.; Ave, M.; Boyle, P.; Hoppner, C.; Horandel, J.; Muller, D. Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER. Astrophys. J. 2011, 742, 14. [Google Scholar] [CrossRef] [Green Version]
- Panov, A.D.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G.L.; Watts, J.W.; Wefel, J.P.; Wu, J.; Ganel, O.; Guzik, T.G.; Zatsepin, V.I.; et al. Energy Spectra of Abundant Nuclei of Primary Cosmic Rays from the Data of ATIC-2 Experiment: Final Results. Bull. Russ. Acad. Sci. Phys. 2009, 73, 564–567. [Google Scholar] [CrossRef]
- Höorandel, J.R. A review of experimental results at the knee. J. Phys. Conf. Ser. 2006, 47, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Asakimori, K.; Burnett, T.H.; Cherry, M.L.; Chevli, K.; Christ, M.J.; Dake, S.; Derrickson, J.H.; Fountain, W.F.; Fuki, M.; Gregory, J.C.; et al. Cosmic-Ray Proton and Helium Spectra: Results from the JACEE Experiment. Astrophys. J. Lett. 1998, 502, 278–283. [Google Scholar] [CrossRef]
- Ivanenko, I.P.; Shestoperov, V.Y.; Chikova, L.O.; Fateeva, I.M.; Khein, L.A.; Podoroznyi, D.M.; Rapoport, I.D.; Samsonov, G.A.; Sobinyakov, V.A.; Turundaevskyi, A.N.; et al. Energy Spectra of Cosmic Rays above 2 TeV as Measured by the ‘SOKOL’ Apparatus. In Proceedings of the 23rd International Cosmic Ray Conference, Alberta, AB, Canada, 19–30 July 1993. [Google Scholar]
- Young, J.S.; Freier, P.S.; Waddington, C.J.; Brewster, N.R.; Fickle, R.K. The elemental and isotopic composition of cosmic rays—Silicon to nickel. Astrophys. J. 1981, 246, 1014–1030. [Google Scholar] [CrossRef]
- Lave, K.A.; Wiedenbeck, M.E.; Binns, W.R.; Christian, E.R.; Cummings, A.C.; Davis, A.J.; De Nolfo, G.A.; Israel, M.H.; Leske, R.A.; Mewaldt, R.A.; et al. Galactic cosmic-ray energy spectra and composition during the 2009–2010 solar minimum period. Astrophys. J. 2013, 770, 117. [Google Scholar] [CrossRef]
- Mueller, D.; Swordy, S.P.; Meyer, P.; L’Heureux, J.; Grunsfeld, J.M. Energy spectra and composition of primary cosmic rays. Astrophys. J. Lett. 1991, 374, 356. [Google Scholar] [CrossRef]
- Hörandel, J. On the knee in the energy spectrum of cosmic rays. Astropart. Phys. 2003, 19, 193–220. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, S.; Ueno, H.; Fujimoto, K.; Kondo, I.; Nagashima, K. Sidereal Time Variation of Small Air Showers Observed at Mt. Norikura. 1973; Volume 2, p. 1058. Available online: https://ui.adsabs.harvard.edu/abs/1973ICRC....2.1058S (accessed on 9 April 2022).
- Bercovitch, M.; Agrawal, S.P. Cosmic ray anisotropies at median primary rigidities between 100 and 1000 GV. In Proceedings of the International Cosmic Ray Conference, Paris, France, 13–25 July 1981; Available online: https://ui.adsabs.harvard.edu/abs/1981ICRC...10..246B (accessed on 9 April 2022).
- Thambyahpillai, T. The Sidereal Diurnal Variation Measured Underground in London. In Proceedings of the International Cosmic Ray Conference, Bangalore, India, 22 August–3 September 1983; Available online: https://ui.adsabs.harvard.edu/abs/1983ICRC....3..383T (accessed on 9 April 2022).
- Swinson, D.B.; Nagashima, K. Corrected sidereal anisotropy for underground muons. Planet. Space Sci. 1985, 33, 1069–1072. [Google Scholar] [CrossRef]
- Andreyev, Y.M.; Chudakov, A.E.; Kozyarivsky, V.A.; Sidorenko, A.M.; Tulupova, T.I.; Voevodsky, A.V. Cosmic Ray Sidereal Anisotropy Observed by Baksan Underground Muon Telescope. 1987; Volume 2, p. 22. Available online: https://ui.adsabs.harvard.edu/abs/1987ICRC....2...22A (accessed on 9 April 2022).
- Lee, Y.W.; Ng, L.K. Observation of Cosmic-Ray Intensity Variation Using AN Underground Telescope. 1987; Volume 2, p. 18. Available online: https://ui.adsabs.harvard.edu/abs/1987ICRC....2...18L (accessed on 9 April 2022).
- Ueno, H.; Fujii, Z.; Yamada, T. 11 Years Variations of Sidereal Anisotropy Observed at Sakashita Underground Station. 1990; Volume 6, p. 361. Available online: https://ui.adsabs.harvard.edu/abs/1990ICRC....6..361U (accessed on 9 April 2022).
- Cutler, D.J.; Groom, D.E. Mayflower Mine 1500 GV Detector: Cosmic-Ray Anisotropy and Search for Cygnus X-3. Astrophys. J. 1991, 376, 322. [Google Scholar] [CrossRef]
- Munakata, K.; Yasue, S.; Mori, S.; Kato, C.; Koyama, M.; Akahane, S.; Fujii, Z.; Ueno, H.; Humble, J.E.; Fenton, A.G.; et al. Two Hemisphere Observations of the North-South Sidereal Asymmetry at ∼1 TeV. 1995; Volume 4, p. 639. Available online: https://ui.adsabs.harvard.edu/abs/1995ICRC....4..639M (accessed on 9 April 2022).
- Mori, S.; Yasue, S.; Munakata, K.; Kato, C.; Akahane, S.; Koyama, M.; Kitawada, T. Observation of Sidereal Anisotropy of Cosmic Rays at ∼1 TV. 1995; Volume 4, p. 648. Available online: https://ui.adsabs.harvard.edu/abs/1995ICRC....4..648M. (accessed on 9 April 2022).
- Fenton, K.B.; Fenton, A.G.; Humble, J.E. Sidereal Variations at High Energies—Observations at Poatina. 1995; Volume 4, p. 635. Available online: https://ui.adsabs.harvard.edu/abs/1995ICRC....4..635F. (accessed on 9 April 2022).
- Munakata, K.; Kiuchi, T.; Yasue, S.; Kato, C.; Mori, S.; Hirata, K.S.; Kihara, K.; Oyama, Y.; Mori, M.; Fujita, K. Large scale anisotropy of the cosmic ray muon flux in Kamiokande. Phys. Rev. D. 1997, 56, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P. The Search for the sidereal and solar diurnal modulations in the total MACRO muon data set. Phys. Rev. D. 2003, 67, 042002. [Google Scholar] [CrossRef] [Green Version]
- Gombosi, T.; Kóta, J.; Somogyi, A.J.; Varga, A.; Betev, B.; Katsarski, L.; Kavlakov, S.; Khirov, I. Galactic Cosmic Ray Anisotropy at ≈6 × 1013 eV. 1975; Volume 2, pp. 586–591. Available online: https://ui.adsabs.harvard.edu/abs/1975ICRC....2..586G (accessed on 9 April 2022).
- Alexeyenko, V.V.; Chudakov, A.E.; Gulieva, E.N.; Sborschikov, V.G. Anisotropy of Small EAS (about 10(13) Ev). 1981; Volume 2, p. 146. Available online: https://ui.adsabs.harvard.edu/abs/1981ICRC....2..146A (accessed on 9 April 2022).
- Nagashima, K.; Fujimoto, K.; Sakakibara, S.; Fujii, Z.; Ueno, H.; Murakami, K.; Morishita, I. Galactic Cosmic Ray Anisotropy and Its modulation in the Heliomagnetosphere, Inferred from Air Shower Observation at Mt. Norikura. In Proceedings of the 21st International Cosmic Ray Conference, Adelaide, Australia, 6–19 January 1990; Available online: https://inspirehep.net/literature/309085 (accessed on 9 April 2022).
- Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Bosio, A.; Castellin}, A.; Castagnoli, C.; Chaivasa, A.; et al. Study of the Cosmic Ray Anisotropy at Eo ∼ 100 TeV from EAS-TOP: 1992–1994. 1995, Volume 2, p. 800. Available online: https://ui.adsabs.harvard.edu/abs/1995ICRC....2..800A (accessed on 9 April 2022).
- Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Bosio, A.; Castellina, A.; Castagnoli, C.; Chiavassa, A. A Measurement of the Solar and Sidereal Cosmic-Ray Anisotropy at E0 approximately 1014 eV. Astrophys. J. 1996, 470, 501–505. [Google Scholar] [CrossRef]
- Alekseenko, V.V.; Cherniaev, A.B.; Djappuev, D.D.; Klimenko, N.F.; Kudjaev, A.U.; Michailova, O.I.; Stenkin, Y.V.; Stepanov, V.I.; Volchenko, V.I. 10-100 TeV cosmic ray anisotropy measured at Baksan EAS ‘Carpet’ array. Nucl. Phys. B Proc. Suppl. 2009, 196, 179–182. [Google Scholar] [CrossRef]
- Amenomori, M.; Ayabe, S.; Cui, S.W.; Danzengluobu; Ding, L.K.; Ding, X.H.; Feng, C.F.; Feng, Z.Y.; Gao, X.Y.; Geng, Q.X. Large-scale sidereal anisotropy of Galactic cosmic-ray intensity observed by the Tibet air shower array. Astrophys. J. Lett. 2005, 626, L29–L32. [Google Scholar] [CrossRef]
- Amenomori, M.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Cui, S.W.; Danzengluobu; Ding, L.K.; Feng, C.F.; Feng, Z.; et al. Northern Sky Galactic Cosmic Ray Anisotropy between 10-1000 TeV with the Tibet Air Shower Array. 2015; Volume 34, p. 355. Available online: https://ui.adsabs.harvard.edu/abs/2015ICRC...34..355A (accessed on 9 April 2022).
D0 [cm2·s−1] | δ0 | Nm | ξ | n | vA [km·s−1] | zh [kpc] |
---|---|---|---|---|---|---|
4.87 × 1028 | 0.58 | 0.62 | 0.1 | 4 | 6 | 5 |
Background | Nearby Source | |||||
---|---|---|---|---|---|---|
Element | Normalization | v | q0 | α | ||
(m2·sr·s·GeV)−1 | PV | GeV−1 | TV | |||
P | 1.91 × 10−2 | 2.34 | 7 | 8.28 × 1052 | 2.16 | 25 |
He | 1.43 × 10−3 | 2.27 | 7 | 2.35 × 1052 | 2.08 | 25 |
C | 6.15 × 10−5 | 2.31 | 7 | 7.20 × 1050 | 2.13 | 25 |
N | 7.67 × 10−6 | 2.34 | 7 | 1.13 × 1050 | 2.13 | 25 |
O | 8.20 × 10−5 | 2.36 | 7 | 1.11 × 1051 | 2.13 | 25 |
Ne | 8.05 × 10−6 | 2.28 | 7 | 1.13 × 1050 | 2.13 | 25 |
Mg | 1.62 × 10−5 | 2.39 | 7 | 1.08 × 1050 | 2.13 | 25 |
Si | 1.28 × 10−5 | 2.37 | 7 | 1.05 × 1050 | 2.13 | 25 |
Fe | 1.23 × 10−5 | 2.29 | 7 | 2.20 × 1050 | 2.13 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Yin, S.; Liu, M.; Wang, H.; Li, X.; Li, Y. Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays. Universe 2022, 8, 307. https://doi.org/10.3390/universe8060307
Li A, Yin S, Liu M, Wang H, Li X, Li Y. Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays. Universe. 2022; 8(6):307. https://doi.org/10.3390/universe8060307
Chicago/Turabian StyleLi, Aifeng, Shiyu Yin, Maoyuan Liu, Hao Wang, Xiaoyu Li, and Yaping Li. 2022. "Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays" Universe 8, no. 6: 307. https://doi.org/10.3390/universe8060307
APA StyleLi, A., Yin, S., Liu, M., Wang, H., Li, X., & Li, Y. (2022). Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays. Universe, 8(6), 307. https://doi.org/10.3390/universe8060307