The Effects of Elemental Abundances on Fitting Supernova Remnant Models to Data
Abstract
:1. Introduction
2. Analysis
2.1. The Model for SNR Evolution
2.2. Emission Measure () and EM-Weighted Gas Temperature ()
2.3. Dependence of and on Mean Molecular Weights and Ionization
2.3.1. Electron Temperature and Electron-Ion Equilibration
3. Results and Discussion
3.1. Definition of
3.2. Scaling Relations for and
3.3. Chemical Composition and Partial Ionization Examples
3.4. Example Application to a SNR with Reverse Shock Measured
3.5. Considerations from Other Wavelengths Than X-ray
4. Summary and Conclusions
Funding
Conflicts of Interest
1 | Calculated using the solar abundances from [32]. |
2 | There are other cases where the integrals simplify, which we do not discuss in detail. e.g., if = constant then simplifies, and if = constant then simplifies. Similar special cases for other integrals are not discussed here. |
3 | We do not discuss other special cases which also give identical results, such as for constant. |
4 | Otherwise, the more complicated full integral expressions must be used. |
References
- Cox, D. The Three-Phase Interstellar Medium Revisited. Annu. Rev. Astron. Astrophys. 2005, 43, 337–385. [Google Scholar] [CrossRef] [Green Version]
- Vink, J. Supernova remnants: The X-ray perspective. Astron. Astrophys. Rev. 2012, 20, 49. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Wolfe, N.; Frohlich, C. PUSHing Core-collapse Supernovae to Explosions in Spherical Symmetry. V. Equation of State Dependency of Explosion Properties, Nucleosynthesis Yields, and Compact Remnants. Astrophys. J. 2022, 929, 43. [Google Scholar] [CrossRef]
- Green, D. A revised catalogue of 294 Galactic supernova remnants. J. Astrophys. Astron. 2019, 40, 36. [Google Scholar] [CrossRef] [Green Version]
- Guest, B.; Safi-Harb, S.; Tang, X. The deepest Chandra X-ray study of the plerionic supernova remnant G21.5-0.9. Mon. Not. R. Astron. Soc. 2019, 482, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Alan, N.; Park, S.; Bilir, S. A Detailed Archival CHANDRA Study of the Young Core-collapse Supernova Remnant 1E 0102.2-7219 in the Small Magellanic Cloud. Astrophys. J. 2019, 873, 53. [Google Scholar] [CrossRef] [Green Version]
- Okon, H.; Tanaka, T.; Uchida, H.; Yamaguchi, H.; Tsuru, T.G.; Seta, M.; Smith, R.K.; Yoshiike, S.; Orlando, S.; Bocchino, F.; et al. Deep XMM-Newton Observations Reveal the Origin of Recombining Plasma in the Supernova Remnant W44. Astrophys. J. 2020, 890, 62. [Google Scholar] [CrossRef] [Green Version]
- Katsuragawa, M.; Nakashima, S.; Matsumura, H.; Tanaka, T.; Uchida, H.; Lee, S.H.; Uchiyama, Y.; Arakawa, M.; Takahashi, T. Suzaku X-ray observations of the mixed-morphology supernova remnant CTB 1. Publ. Astron. Soc. Jpn. 2018, 70, 110. [Google Scholar] [CrossRef]
- Hamilton, A.; Sarazin, C.; Chevalier, R. X-ray line emission from supernova remnants. I—Models for adiabatic remnants. Astrophys. J. Suppl. 1983, 51, 115–147. [Google Scholar] [CrossRef]
- Badenes, C.; Borkowski, K.J.; Hughes, J.P.; Hwang, U.; Bravo, E. Constraints on the Physics of Type Ia Supernovae from the X-Ray Spectrum of the Tycho Supernova Remnant. Astrophys. J. 2006, 645, 1373–1391. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rodríguez, H.; Badenes, C.; Lee, S.H.; Patnaude, D.J.; Foster, A.R.; Yamaguchi, H.; Auchettl, K.; Bravo, E.; Slane, P.O.; Piro, A.L.; et al. Chandrasekhar and Sub-Chandrasekhar Models for the X-Ray Emission of Type Ia Supernova Remnants. I. Bulk Properties. Astrophys. J. 2018, 865, 151. [Google Scholar] [CrossRef] [Green Version]
- Bravo, E.; Gil-Pons, P.; Gutiérrez, J.L.; Doherty, C.L. Explosion of white dwarfs harboring hybrid CONe cores. Astron. Astrophys. 2016, 589, A38. [Google Scholar] [CrossRef] [Green Version]
- Orlando, S.; Ono, M.; Nagataki, S.; Miceli, M.; Umeda, H.; Ferrand, G.; Bocchino, F.; Petruk, O.; Peres, G.; Takahashi, K.; et al. Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A. Astron. Astrophys. 2020, 636, A22. [Google Scholar] [CrossRef] [Green Version]
- Orlando, S.; Wongwathanarat, A.; Janka, H.T.; Miceli, M.; Ono, M.; Nagataki, S.; Bocchino, F.; Peres, G. The fully developed remnant of a neutrino-driven supernova. Evolution of ejecta structure and asymmetries in SNR Cassiopeia A. Astron. Astrophys. 2021, 645, A66. [Google Scholar] [CrossRef]
- Ono, M.; Nagataki, S.; Ferr, G.; Takahashi, K.; Umeda, H.; Yoshida, T.; Orlando, S.; Miceli, M. Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single-star and Binary Merger Progenitor Models for SN 1987A. Astrophys. J. 2020, 888, 111. [Google Scholar] [CrossRef]
- Leahy, D.; Filipovic, M. Physical Properties of the Supernova Remnant Population in the Small Magellanic Cloud. arXiv 2022, arXiv:2204.01550. [Google Scholar]
- Leahy, D.; Ranasinghe, S.; Gelowitz, M. Evolutionary Models for 43 Galactic Supernova Remnants with Distances and X-ray Spectra. Astrophys. J. Suppl. 2020, 248, 16. [Google Scholar] [CrossRef]
- Leahy, D.; Ranasinghe, S. Evolutionary Models for 15 Galactic Supernova Remnants with New Distances. Astrophys. J. 2018, 866, 9. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D. Energetics and Birth Rates of Supernova Remnants in the Large Magellanic Cloud. Astrophys. J. 2017, 837, 36. [Google Scholar] [CrossRef] [Green Version]
- Pejcha, O.; Thompson, T. The Landscape of the Neutrino Mechanism of Core-collapse Supernovae: Neutron Star and Black Hole Mass Functions, Explosion Energies, and Nickel Yields. Astrophys. J. 2015, 801, 90. [Google Scholar] [CrossRef]
- Murphy, J.; Mabanta, Q.; Dolence, J. A comparison of explosion energies for simulated and observed core-collapse supernovae. Mon. Not. R. Astron. Soc. 2019, 489, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Truelove, J.; McKee, C. Evolution of Nonradiative Supernova Remnants. Astrophys. J. Suppl. 1999, 120, 299–326. [Google Scholar] [CrossRef]
- Leahy, D.; Wang, Y.; Lawton, B.; Ranasinghe, S.; Filipović, M. Emission Measures and Emission-measure-weighted Temperatures of Shocked Interstellar Medium and Ejecta in Supernova Remnants. Astron. J. 2019, 158, 149. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.; Williams, J. A Python Calculator for Supernova Remnant Evolution. Astron. J. 2017, 153, 239. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, K. XSPEC: The First Ten Years. Anal. Softw. Syst. V 1996, 101, 17. [Google Scholar]
- Reynolds, S. Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 2008, 46, 89–126. [Google Scholar] [CrossRef]
- Cioffi, D.; McKee, C. Dynamics of Radiative Supernova Remnants. Astrophys. J. 1988, 334, 252. [Google Scholar] [CrossRef]
- Chevalier, R. Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 1982, 258, 790–797. [Google Scholar] [CrossRef]
- Nadezhin, D. On the Initial Phase of Interaction Between Expanding Stellar Envelopes and Surrounding Medium. Astrophys. Space Sci. 1985, 112, 225–249. [Google Scholar] [CrossRef]
- Ghavamian, P.; Schwartz, S.J.; Mitchell, J.; Masters, A.; Laming, J.M. Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection. Space Sci. Rev. 2013, 178, 633–663. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USA. Personal communication, 2021.
- Lodder, K. Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J. 2003, 591, 1220–1247. [Google Scholar] [CrossRef]
- Cox, D.; Anderson, P. Extended adiabatic blast waves and a model of the soft X-ray background. Astrophys. J. 1982, 253, 268–289. [Google Scholar] [CrossRef]
- Ranasinghe, S.; Leahy, D. Revised Distances to 21 Supernova Remnants. Astron. J. 2018, 155, 204. [Google Scholar] [CrossRef] [Green Version]
- Maggi, P.; Filipović, M.D.; Vukotić, B.; Ballet, J.; Haberl, F.; Maitra, C.; Kavanagh, P.; Sasaki, M.; Stupar, M. The supernova remnant population of the Small Magellanic Cloud. Astron. Astrophys. 2019, 631, A127. [Google Scholar] [CrossRef] [Green Version]
- Fesen, R.A.; Hammell, M.C.; Morse, J.; Chevalier, R.A.; Borkowski, K.J.; Dopita, M.A.; Gerardy, C.L.; Lawrence, S.S.; Raymond, J.C.; van den Bergh, S.; et al. The Expansion Asymmetry and Age of the Cassiopeia A Supernova Remnant. Astrophys. J. 2006, 645, 283–292. [Google Scholar] [CrossRef]
- Williams, B.J.; Chomiuk, L.; Hewitt, J.W.; Blondin, J.M.; Borkowski, K.J.; Ghavamian, P.; Petre, R.; Reynolds, S.P. An X-ray and Radio Study of the Varying Expansion Velocities in Tycho’s Supernova Remnant. Astrophys. J. Lett. 2016, 823, L32. [Google Scholar] [CrossRef] [Green Version]
- Rho, J.; Reach, W.T.; Tappe, A.; Hwang, U.; Slavin, J.D.; Kozasa, T.; Dunne, L. Spitzer Observations of the Young Core-Collapse Supernova Remnant 1E0102-72.3: Infrared Ejecta Emission and Dust Formation. Astrophys. J. 2009, 700, 579–596. [Google Scholar] [CrossRef] [Green Version]
Composition | 1 | 2 | 3 | 1 | 2 | 3 | ||
---|---|---|---|---|---|---|---|---|
Solar 4 | 1.356 | 1.151 | 2.303 | 1.250 | 1.250 | 0.599 | 0.810 | 0.625 |
SMC 5 | 1.340 | 1.145 | 2.290 | 1.236 | 1.236 | 0.594 | 0.803 | 0.618 |
CC-type ejecta 5 | 1.810 | 1.289 | 2.578 | 1.542 | 1.542 | 0.702 | 0.965 | 0.771 |
Type Ia ejecta 6 | 1327 | 2.093 | 4.187 | 35.57 | 35.57 | 1.977 | 3.746 | 17.78 |
Mixture 1 CC-Ia 7 | 12.24 | 1.894 | 3.789 | 7.789 | 7.789 | 1.524 | 2.549 | 3.894 |
Mixture 2 CC-Ia 8 | 3.615 | 1.596 | 3.191 | 2.956 | 2.956 | 1.036 | 1.535 | 1.478 |
Mixture ISM-CC 9 | 1.551 | 1.216 | 2.433 | 1.381 | 1.381 | 0.647 | 0.881 | 0.690 |
Mixture ISM-Ia 10 | 2.710 | 1.486 | 2.971 | 2.415 | 2.415 | 0.920 | 1.332 | 1.207 |
Pure oxygen | ∞ | 2.000 | 4.000 | 16.00 | 16.00 | 1.778 | 3.200 | 8.000 |
Pure iron | ∞ | 2.154 | 4.308 | 56.00 | 56.00 | 2.074 | 4.000 | 28.00 |
Composition 1 | 2 | 3 | |
---|---|---|---|
Solar | 1 | 1 | 1 |
SMC | 1.001 | 1.017 | 1.023 |
CC-type ejecta | 0.925 | 0.724 | 0.657 |
Type Ia ejecta | 0.0291 | 0.0193 | |
Mixture 1 CC-Ia | 0.691 | 0.0975 | 0.0258 |
Mixture 2 CC-Ia | 0.888 | 0.305 | 0.179 |
Mixture ISM-CC | 0.967 | 0.857 | 0.820 |
Mixture ISM-Ia | 0.968 | 0.401 | 0.268 |
Pure oxygen | 0 | 0.0450 | |
Pure iron | 0 | 0.0119 |
s, n | Composition 2 | (+, −) | (+, −) | |
---|---|---|---|---|
(keV) | ( cm) | |||
Observed: | n/a | 0.91 (+0.03, −0.03) | 728 (+125, −99) | |
Models: | 0.7 | CC | 3.6 (+1.1, −1.0) | 0.14 (+0.03, −0.03) |
0.7 | Ia | 10.1 (+3.1, −2.8) | 0.0037 (+0.0007, −0.0007) | |
0.10 | CC | 2.2 (+0.6, −0.6) | 0.24 (+0.04, −0.04) | |
0.10 | Ia | 6.2 (+1.7, −1.7) | 0.0065 (+0.0010, −0.0010) | |
2.7 | CC | 0.55 (+0.16, −0.15) | 130 (+149, −68) | |
2.7 | Ia | 1.55 (+0.45, −0.42) | 3.5 (+4.0, −1.8) | |
2.10 | CC | 0.11 (+0.03, −0.03) | 1660 (+1900, −890) | |
2.10 | Ia | 0.31 (+0.08, −0.08) | 44 (+51, −24) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leahy, D.A. The Effects of Elemental Abundances on Fitting Supernova Remnant Models to Data. Universe 2022, 8, 274. https://doi.org/10.3390/universe8050274
Leahy DA. The Effects of Elemental Abundances on Fitting Supernova Remnant Models to Data. Universe. 2022; 8(5):274. https://doi.org/10.3390/universe8050274
Chicago/Turabian StyleLeahy, Denis A. 2022. "The Effects of Elemental Abundances on Fitting Supernova Remnant Models to Data" Universe 8, no. 5: 274. https://doi.org/10.3390/universe8050274
APA StyleLeahy, D. A. (2022). The Effects of Elemental Abundances on Fitting Supernova Remnant Models to Data. Universe, 8(5), 274. https://doi.org/10.3390/universe8050274