Directional-Sensitive X-ray/Gamma-ray Imager on Board the VZLUSAT-2 CubeSat for Wide Field-of-View Observation of GRBs in Low Earth Orbit
Abstract
:1. Space-Borne X-ray and Gamma-ray Observational Research
1.1. Previous Space-Borne Developments, Other Technologies
1.2. 3U Cubesat VZLUSAT-2
2. Miniaturized X-ray/Gamma-ray Imaging Payload
2.1. X-ray Optics Collimator
- ROI = 1: open quadrant with wolfram cross frame
- ROI = 2: horizontal 1D segment
- ROI = 3: vertical 1D segment
- ROI = 4: combined 2D segment.
2.2. Focal Plane X-ray/Gamma-ray Imaging Detector
2.3. CdTe Sensor for Enhanced Efficiency of Photon Detection
2.4. Payload Operation, Data Handling and Storage
2.5. Radiation Imaging, Detector Operation Modes
2.6. Deployment as Space Radiation Monitor
2.7. Astrophysics Observational Applications
3. Energy-Sensitive X-ray and Gamma-ray Imaging in Wide FoV
3.1. Photon-Counting Sensitivity, Quantum-Imaging Detection
3.2. Spectral-Sensitive Imaging, Energy Resolution
3.3. Directional Response, Field-of-View
3.4. Effective Area, Geometric Factor
3.5. Spatial and Angular Resolution
3.6. Radiation Field Component Discrimination, Segmented Region Response
4. Observational Plan and Intended Measurements in Orbit
4.1. Observational Strategy and Operation in Orbit
- payload tests, instrumentation performance in the orbit and space environment conditions
- verifying the use of the planner and testing cyclic commands such as slides
- exposure prediction depending on the flight over a specific area from 10 ms to 20 s (for 2-day data collection)
- measurement of the earth’s radiation map (two days—one map)
- long-term monitoring of the solar spectrum with the need for single-photon data filtering
- In the case of the function of orientation and stabilization, the search for bright triggers—including the long-term monitoring of the sky in Gamma-rays. In connection with the VIS camera—star-tracker—position determination of the source could be feasible.
4.2. Astrophysical Goals and Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.nasa.gov/content/what-are-smallsats-and-cubesats (accessed on 28 February 2022).
- Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Technology_CubeSats (accessed on 28 February 2022).
- Ohno, M.; Werner, N.; Pál, A.; Řípa, J.; Galgóczi, G.; Tarcai, N.; Várhegyi, Z.; Fukazawa, Y.; Mizuno, T.; Takahashi, H.; et al. CAMELOT: Design and performance verification of the detector concept and localization capability. In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10699, p. 1069964. [Google Scholar]
- Werner, N.; Řípa, J.; Pál, A.; Ohno, M.; Tarcai, N.; Torigoe, K.; Tanaka, K.; Uchida, N.; Mészáros, L.; Galgóczi, G.; et al. CAMELOT: Cubesats applied for measuring and localising transients mission overview. In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10699, p. 106992P. [Google Scholar]
- Colagrossi, A.; Prinetto, J.; Silvestrini, S.; Lavagna, M.R. Sky visibility analysis for astrophysical data return maximization in HERMES constellation. J. Astron. Telesc. Instrum. Syst. 2020, 6, 048001. [Google Scholar] [CrossRef]
- Pál, A.; Ohno, M.; Mészáros, L.; Werner, N.; Řípa, J.; Frajt, M.; Hirade, N.; Hudec, J.; Kapuš, J.; Koleda, M.; et al. GRBAlpha: A 1U CubeSat mission for validating timing-based Gamma-ray burst localization. Proc. SPIE 2020, 11444, 114444V. [Google Scholar]
- Dwyer, J.R.; Smith, D.M.; Cummer, S.A. High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena. Space Sci. Rev. 2012, 173, 133–196. [Google Scholar] [CrossRef] [Green Version]
- Hudec, R. X/EUV and UV optics for miniature cubesats payloads. In Proceedings of the EUV and X-ray Optics: Synergy between Laboratory and Space VI, Prague, Czech Republic, 3–4 April 2019; Volume 11032, p. 1103204. [Google Scholar] [CrossRef]
- Baca, T.; Jilek, M.; Vertat, I.; Urban, M.; Nentvich, O.; Filgas, R.; Granja, C.; Inneman, A.; Daniel, V. Timepix in LEO Orbit onboard the VZLUSAT-1 Nanosatellite: 1-year of Space Radiation Dosimetry Measurements. J. Instrum. JINST 2018, 13, C11010. [Google Scholar] [CrossRef]
- Baca, T.; Platkevic, M.; Jakubek, J.; Inneman, A.; Stehlikova, V.; Urban, M.; Nentvich, O.; Blazek, M.; McEntaffer, R.; Daniel, V. Miniaturized X-ray telescope for VZLUSAT-1 nanosatellite with Timepix detector. J. Instrum. 2016, 11, C10007. [Google Scholar] [CrossRef] [Green Version]
- Daniel, V.; Inneman, A.; Vertat, I.; Baca, T.; Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Skala, P.; Filgas, R.; et al. In-Orbit Commissioning of Czech Nanosatellite VZLUSAT-1 for the QB50 Mission with a Demonstrator of a Miniaturised Lobster-Eye X-Ray Telescope and Radiation Shielding Composite Materials. Space Sci. Rev. 2019, 215, 40. [Google Scholar] [CrossRef]
- Urban, M.; Nentvich, O.; Stehlikova, V.; Baca, T.; Daniel, V.; Hudec, R. VZLUSAT-1: Nanosatellite with miniature lobster eye X-ray telescope and qualification of the radiation shielding composite for space application. Acta Astronaut. 2017, 140, 96–104. [Google Scholar] [CrossRef]
- Llopart, X.; Ballabriga, R.; Campbell, M.; Tlustos, L.; Wong, W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 581, 485–494. [Google Scholar] [CrossRef]
- Hudec, R. Small satellites—Useful tools for multifrequency astrophysics. In Proceedings of the Multifrequency Behaviour of High Energy Cosmic Sources—XIII, Palermo, Italy, 3–8 June 2019; Available online: https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=362,id.70 (accessed on 1 February 2022).
- Dániel, V.; Maršíková, V.; Hudec, R.; Pína, L.; Inneman, A.; Pelc, K. Small Spacecraft Payload Study for X-ray Astrophysics including GRB Science. Universe 2022, 8, 144. [Google Scholar] [CrossRef]
- Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.; Skulinova, M. The feasibility of independent observations/detections of GRBs in X-rays. In Proceedings of the GAMMA-RAY BURST: Sixth Huntsville Symposium, AIP Conference Proceedings, American Institute of Physic, AIP Publishing LLC.; Melville, NY, USA, 25 May 2009, Volume 1133, pp. 218–220.
- Hudec, R.; Skulinova, M.; Pina, L.; Sveda, L. Lobster Eye Telescopes as X-ray All-Sky Monitors. Chin. J. Astron. Astrophys. Suppl. 2008, 8, 381–385. [Google Scholar]
- Tichy, V.; Hudec, R.; abd Simon, V. Nano-sat lobster eye soft X-ray monitor. In Proceedings of the XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop, Palermo, Italy, 25–30 May 2015. [Google Scholar]
- Pina, L.; Hudec, R.; Inneman, A.; Cerna, D.; Jakubek, J.; Sieger, L.; Dániel, V.; Cash, W.; Mikulickova, L.; Pavlica, R.; et al. X-ray monitoring for astrophysical applications on Cubesat. Proc. SPIE 2015, 9510, 37–45. [Google Scholar]
- Zhang, D.; Li, X.; Xiong, S.; Peng, W.; Zhang, F.; Li, Y.; An, Z.; Xu, Y.; Sun, X.; Zhu, Y. Energy response of GECAM Gamma-Ray Detector (GRD) prototype. Nucl. Inst. Methods Phys. Res. 2019, 921, 8–13. [Google Scholar] [CrossRef]
- Wen, J.; Long, X.; Zheng, X.; An, Y.; Cai, Z.; Cang, J.; Che, Y.; Chen, C.; Chen, L.; Chen, Q.; et al. GRID: A student project to monitor the transient Gamma-ray sky in the multi-messenger astronomy era. Exp. Astron. 2019, 48, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Ubertini, P.; Lebrun, F.; Cocco, G.D.; Bazzano, A.; Bird, A.J.; Broenstad, K.; Goldwurm, A.; Rosa, G.L.; Labanti, C.; Laurent, P.; et al. IBIS: The Imager on-board INTEGRAL. Astron. Astrophys. 2003, 411, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.A.; Hullinger, D.D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.M.; et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 2004, 120, 143–164. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.vzlusat2.cz (accessed on 28 February 2022).
- Available online: https://www.pilsencube.zcu.cz/vzlusat2/ (accessed on 28 February 2022).
- Granja, C.; Kudela, K.; Jakubek, J.; Krist, P.; Chvatil, D.; Stursa, J.; Polansky, S. Directional detection of charged particles and cosmic rays with the miniaturized radiation camera MiniPix Timepix. Nucl. Instr. Methods A 2018, 911, 142–152. [Google Scholar] [CrossRef]
- Webpage AMPTEK. Available online: https://www.amptek.com/internal-products/xr-100t-cdte-cadmium-telluride-detector-efficiency-application-note (accessed on 28 February 2022).
- Granja, C.; Polansky, S.; Owens, A.; Pospisil, S.; Owens, A.; Kozacek, Z.; Mellab, K.; Simcak, M. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit. Planet. Space Sci. 2016, 125, 114–129. [Google Scholar] [CrossRef]
- Granja, C.; Jakubek, J.; Polansky, S.; Zach, V.; Krist, P.; Chvatil, D.; Stursa, J.; Sommer, M.; Ploc, O.; Kodaira, S.; et al. Resolving power of pixel detector Timepix for wide-range electron, proton and ion detection. Nucl. Instr. Methods A 2018, 908, 60–71. [Google Scholar] [CrossRef]
- Granja, C.; Pospisil, S. Quantum Dosimetry and Online Visualization of X-ray and Charged Particle Radiation in Aircraft at Operational Flight Altitudes with the Pixel Detector Timepix. Adv. Space Res. 2014, 54, 241–251. [Google Scholar] [CrossRef]
- Jakubek, J. Precise energy calibration of pixel detector working in time-overthreshold mode. Nucl. Instrum. Methods Phys. Res. A 2011, 633, S262–S266. [Google Scholar] [CrossRef]
- Gehrels, N.; Meszaros, P. Gamma-ray Bursts. Science 2012, 337, 932–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrows, D.N.; Romano, P.; Falcone, A.; Kobayashi, S.; Zhang, B.; Moretti, A.; O’Brien, P.T.; Goad, M.R.; Campana, S.; Page, K.L.; et al. Bright X-ray Flares in Gamma-Ray Burst Afterglows. Science 2005, 309, 1833–1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaro, F.; Grindlay, J.E.; Paggi, A. Gamma Ray Bursts in the Fermi era: The spectral energy distribution of the prompt emission. Astrophys. J. Lett. 2010, 1279, 376–378. [Google Scholar]
- Zhang, B.-B.; Liu, Z.-K.; Peng, Z.-K.; Li, Y.; Lü, H.-J.; Yang, J.; Yang, Y.-S.; Yang, Y.-H.; Meng, Y.-Z.; Zou, J.-H.; et al. A peculiarly short-duration Gamma-ray burst from massive star core collapse. Nat. Astron. 2021, 5, 911–916. [Google Scholar] [CrossRef]
- Ohmori, N.; Yamaoka, K.; Yamauchi, M.; Urata, Y.; Ohno, M.; Sugita, S.; Hurley, K.; Tashiro, M.S.; Fukazawa, Y.; Iwakiri, W.; et al. Spectral properties of Gamma-ray bursts observed by the Suzaku wide-band all-sky monitor. Publ. Astron. Soc. Jap. 2019, 71, 76. [Google Scholar] [CrossRef]
- Ferocia, M.; Costa, E.; Soffitta, P.; del Monte, E.; di Persio, G.; Donnarumma, I.; Evangelista, Y.; Frutti, M.; Lapshova, I.; Lazzarotto, F.; et al. AGILE: The hard X-ray Imager for the AGILE space mission. Nucl. Instrum. Meth. A 2007, 581, 728–754. [Google Scholar] [CrossRef] [Green Version]
- Tavani, M.; Al, E.; Collaboration, F.T. The AGILE Mission. Astron. Astrophys. 2003, 502, 995–1013. [Google Scholar] [CrossRef]
- Voska, V.; Duman, D.; Hudec, R. Survey of Possible Observation Targets for Timepix Detector-Equipped Scientific Mission in X-ray and Gamma-ray spectra; KIN 2021/2022 Semestral Wok Report; Faculty of Electrical Engineering, Czech Technical University in Prague: Prague, Czech Republic, 2021. [Google Scholar]
- Caroli, E.; Auricchio, N.; Budtz-Jorgensen, C.; Curado da Silva, R.M.; Del Sordo, S.; Donati, A.; Kuvvetli, I.; Natalucci, L.; Quadrini, E.M.; Stephen, J.B.; et al. A three-dimensional CZT detector as a focal plane prototype for a Laue Lens telescope. In Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray; Turner Martin, J.L., Flanagan Kathryn, A., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 7011, p. 70113G. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granja, C.; Hudec, R.; Maršíková, V.; Inneman, A.; Pína, L.; Doubravova, D.; Matej, Z.; Daniel, V.; Oberta, P. Directional-Sensitive X-ray/Gamma-ray Imager on Board the VZLUSAT-2 CubeSat for Wide Field-of-View Observation of GRBs in Low Earth Orbit. Universe 2022, 8, 241. https://doi.org/10.3390/universe8040241
Granja C, Hudec R, Maršíková V, Inneman A, Pína L, Doubravova D, Matej Z, Daniel V, Oberta P. Directional-Sensitive X-ray/Gamma-ray Imager on Board the VZLUSAT-2 CubeSat for Wide Field-of-View Observation of GRBs in Low Earth Orbit. Universe. 2022; 8(4):241. https://doi.org/10.3390/universe8040241
Chicago/Turabian StyleGranja, Carlos, Rene Hudec, Veronika Maršíková, Adolf Inneman, Ladislav Pína, Daniela Doubravova, Zdenek Matej, Vladimir Daniel, and Peter Oberta. 2022. "Directional-Sensitive X-ray/Gamma-ray Imager on Board the VZLUSAT-2 CubeSat for Wide Field-of-View Observation of GRBs in Low Earth Orbit" Universe 8, no. 4: 241. https://doi.org/10.3390/universe8040241
APA StyleGranja, C., Hudec, R., Maršíková, V., Inneman, A., Pína, L., Doubravova, D., Matej, Z., Daniel, V., & Oberta, P. (2022). Directional-Sensitive X-ray/Gamma-ray Imager on Board the VZLUSAT-2 CubeSat for Wide Field-of-View Observation of GRBs in Low Earth Orbit. Universe, 8(4), 241. https://doi.org/10.3390/universe8040241