Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO
Abstract
:1. Introduction
2. Signal of the Diffuse Supernova Neutrino Background
3. Super-Kamiokande with Gadolinium-Doping (Sk-Gd)
3.1. A Brief History of Super-Kamiokande
3.2. A Blend with Benefits
3.3. Putting the Gd in SK-Gd
3.4. The Future of Gd-Loaded Water Cherenkov Detectors
4. The Juno Experiment
- First, there are two intrinsic backgrounds from other sources. In the vicinity of the low energy part of the DSNB spectrum, the irreducible background is from those ’s emitted from nearby nuclear power reactors, whose fluxes are highly decreased above the neutrino energy of around MeV. A choice of the lower boundary of the search window at 12 MeV can reduce this background to a negligible level. The high energy part of the indistinguishable background is composed of the IBD interactions of the low energy tail of atmospheric with free protons.
- The second category of the main backgrounds for the DSNB searches is from the cosmic muon spallation. Fast neutrons are generated by spallation events outside the CD. The event rate is higher for larger radii, in particular within the upper and equator regions because of the shallow water buffer. Therefore, the fast neutron background can be reduced by proper selection of the fiducial volume of the CD. The Li/He background is produced from radioactive decays of long-lived spallation isotopes in the CD, and is correlated with the parent muons and associated neutrons. Therefore, the Li/He background can be effectively reduced by muon veto strategies. Moreover, excellent energy resolution at JUNO will ensure most of the Li/He background below 12 MeV of the visible energy and can be safely neglected if 12 MeV is chosen as the lower boundary of the search window.
- Finally the dominant background for the DSNB search is from the neutral current (NC) interactions of atmospheric neutrinos with the carbon nuclei. When high energy atmospheric neutrinos interact with carbon, copious neutrons, protons, ’s and ’s are generated in association with the outgoing leptons, where those interaction channels with single neutron production may contaminate the IBD signals. To model the NC interaction between the atmospheric neutrinos and the carbon nuclei, one needs to employ both the neutrino interaction generator tools [51,52] and the package for deexcitations of the final-state nuclei [53]. A careful investigation of the atmospheric neutrino NC background has been accomplished in Refs [54,55], which are shown to be larger than the DSNB signal by one order of magnitude.
5. Projected Dsnb Sensitivities
- We refer to the nominal fiducial masses, i.e., 22.5 kt (or ) for SK-Gd and 17 kt () for JUNO.
- For easy comparison, we choose in both cases the same observation window, ranging in visible energy from 12 MeV to 30 MeV. This range is defined by the irreducible backgrounds for the DSNB observation, i.e., reactor and atmospheric fluxes. Please note that while the reactor background at the location of SK will be smaller, this advantage is at least partially compensated for by the better energy resolution of JUNO [17].
- Finally, for SK-Gd, we cite two sets of numbers in dependence of the gadolinium concentration that is set to be increased in mid-2022 from 0.01% to 0.03% (Section 3).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirizzi, A.; Tamborra, I.; Janka, H.T.; Saviano, N.; Scholberg, K.; Bollig, R.; Hudepohl, L.; Chakraborty, S. Supernova Neutrinos: Production, Oscillations and Detection. Riv. Nuovo Cim. 2016, 39, 1–112. [Google Scholar] [CrossRef]
- Ando, S.; Sato, K. Relic neutrino background from cosmological supernovae. New J. Phys. 2004, 6, 170. [Google Scholar] [CrossRef]
- Beacom, J.F. The Diffuse Supernova Neutrino Background. Ann. Rev. Nucl. Part. Sci. 2010, 60, 439–462. [Google Scholar] [CrossRef] [Green Version]
- Vissani, F.; Pagliaroli, G. The diffuse supernova neutrino background: Expectations and uncertainties derived from SN1987A. Astron. Astrophys. 2011, 528, L1. [Google Scholar] [CrossRef]
- Lunardini, C.; Tamborra, I. Diffuse supernova neutrinos: Oscillation effects, stellar cooling and progenitor mass dependence. J. Cosmol. Astropart. Phys. 2012, 1207, 012. [Google Scholar] [CrossRef]
- Nakazato, K.; Mochida, E.; Niino, Y.; Suzuki, H. Spectrum of the Supernova Relic Neutrino Background and Metallicity Evolution of Galaxies. Astrophys. J. 2015, 804, 75. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, S.; Sumiyoshi, K.; Nakamura, K.; Fischer, T.; Summa, A.; Takiwaki, T.; Janka, H.T.; Kotake, K. Diffuse supernova neutrino background from extensive core-collapse simulations of 8-100M⊙ progenitors. Mon. Not. Roy. Astron. Soc. 2018, 475, 1363–1374. [Google Scholar] [CrossRef] [Green Version]
- Priya, A.; Lunardini, C. Diffuse neutrinos from luminous and dark supernovae: Prospects for upcoming detectors at the O(10) kt scale. J. Cosmol. Astropart. Phys. 2017, 1711, 031. [Google Scholar] [CrossRef] [Green Version]
- Møller, K.; Suliga, A.M.; Tamborra, I.; Denton, P.B. Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background. J. Cosmol. Astropart. Phys. 2018, 1805, 066. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Rentala, V. Neutrinos from the cosmic noon: A probe of the cosmic star formation history. J. Cosmol. Astroparticle Phys. 2021, 2021, 19. [Google Scholar] [CrossRef]
- Kresse, D.; Ertl, T.; Janka, H.T. Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background. Astrophys. J. 2021, 909, 169. [Google Scholar] [CrossRef]
- Abe, K.; Bronner, C.; Hayato, Y.; Hiraide, K.; Ikeda, M.; Imaizumi, S.; Piplani, N. Diffuse Supernova Neutrino Background Search at Super-Kamiokande. Phys. Rev. D 2021, 104, 122002. [Google Scholar] [CrossRef]
- Vagins, M.R. Detection of supernova neutrinos. Nucl. Phys. B Proc. Suppl. 2005, 143, 457–461. [Google Scholar] [CrossRef]
- Vagins, M.R. Relic supernova neutrinos. In Proceedings of the 42nd Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 10–17 March 2007; pp. 417–422. [Google Scholar]
- Sekiya, H. The Super-Kamiokande Gadolinium Project. In Proceedings of the 38th International Conference on High Energy Physics, Chicago, IL, USA, 3–10 August 2016; p. 982. [Google Scholar]
- An, F.; An, G.; An, Q.; Antonelli, V.; Baussan, E.; Beacom, J.; Sinev, V. Neutrino Physics with JUNO. J. Phys. G 2016, 43, 030401. [Google Scholar] [CrossRef]
- Abusleme, A.; Adam, T.; Ahmad, S.; Ahmed, R.; Aiello, S.; Akram, M.; Hong, D. JUNO Physics and Detector. Prog. Part. Nucl. Phys. 2022, arXiv:2104.02565. [Google Scholar]
- Abe, K.; Abe, T.; Aihara, H.; Fukuda, Y.; Hayato, Y.; Huang, K.; Yokoyama, M. Letter of Intent: The Hyper-Kamiokande Experiment---Detector Design and Physics Potential---. arXiv 2011, arXiv:1109.3262. [Google Scholar]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adams, D.; Terrazas, I.C. The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies. arXiv 2018, arXiv:1807.10334. [Google Scholar]
- Suliga, A.M.; Beacom, J.F.; Tamborra, I. Towards probing the diffuse supernova neutrino background in all flavors. Phys. Rev. D 2022, 105, 043008. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Z.; Chen, S. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors. Phys. Lett. 2017, B769, 255–261. [Google Scholar] [CrossRef]
- Sawatzki, J.; Wurm, M.; Kresse, D. Detecting the Diffuse Supernova Neutrino Background in the future Water-based Liquid Scintillator Detector Theia. Phys. Rev. D 2021, 103, 023021. [Google Scholar] [CrossRef]
- Hopkins, A.M.; Beacom, J.F. On the normalisation of the cosmic star formation history. Astrophys. J. 2006, 651, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Keil, M.T.; Raffelt, G.G.; Janka, H.T. Monte Carlo Study of Supernova Neutrino Spectra Formation. ApJ 2003, 590, 971–991. [Google Scholar] [CrossRef]
- Strumia, A.; Vissani, F. Precise quasielastic neutrino/nucleon cross-section. Phys. Lett. B 2003, 564, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Super-Kamiokande Collaboration. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; Fukuda, Y.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Super-Kamiokande Collaboration. Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data. Phys. Rev. Lett. 2001, 86, 5651–5655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renshaw, A.; Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Super-Kamiokande Collaboration. First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation. Phys. Rev. Lett. 2014, 112, 091805. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.H.; Aoki, S.; Bhang, H.; Boyd, S.; Casper, D.; Choi, J.H.; Zalipska, J. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys. Rev. Lett. 2003, 90, 041801. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J.B.; Andreopoulos, C.; Karlen, D. Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam. Phys. Rev. Lett. 2011, 107, 041801. [Google Scholar] [CrossRef]
- Regis, C.; Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Koshio, Y. Search for Proton Decay via p->μ+K0 in Super-Kamiokande I, II, and III. Phys. Rev. D 2012, 86, 012006. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Miura, M.; Moriyama, S.; Super-Kamiokande Collaboration. Search for proton decay via p→νK+ using 260 kiloton·year data of Super-Kamiokande. Phys. Rev. D 2014, 90, 072005. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Super-Kamiokande Collaboration. Search for proton decay via p→e+π0 and p→μ+π0 in 0.31 megaton·years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 2017, 95, 012004. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, A.; Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Imaizumi, S.; Hagiwara, K. Search for proton decay via p→e+π0 and p→μ+π0 with an enlarged fiducial volume in Super-Kamiokande I-IV. Phys. Rev. D 2020, 102, 112011. [Google Scholar] [CrossRef]
- Desai, S.; Ashie, Y.; Fukuda, S.; Fukuda, Y.; Ishihara, K.; Itow, Y. Super-Kamiokande Collaboration Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande. Phys. Rev. D 2004, 70, 083523, Erratum: Phys. Rev. D 2004, 70, 109901. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Imaizumi, S.; Suzuki, A.T. Indirect search for dark matter from the Galactic Center and halo with the Super-Kamiokande detector. Phys. Rev. D 2020, 102, 072002. [Google Scholar] [CrossRef]
- Ikeda, M.; Takeda, A.; Fukuda, Y.; Vagins, M.R.; Abe, K.; Iida, T.; Super-Kamiokande Collaboration. Search for Supernova Neutrino Bursts at Super-Kamiokande. Astrophys. J. 2007, 669, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Wilkes, R.J. Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande. Astropart. Phys. 2016, 81, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Malek, M.; Morii, M.; Fukuda, S.; Fukuda, Y.; Ishitsuka, M.; Itow, Y.; Super-Kamiokande Collaboration. Search for supernova relic neutrinos at Super-Kamiokande. Phys. Rev. Lett. 2003, 90, 061101. [Google Scholar] [CrossRef] [Green Version]
- Bays, K.; Iida, T.; Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Super-Kamiokande Collaboration. Supernova Relic Neutrino Search at Super-Kamiokande. Phys. Rev. D 2012, 85, 052007. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Super-Kamiokande Collaboration. Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV. Astropart. Phys. 2015, 60, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Beacom, J.F.; Vagins, M.R. GADZOOKS! Anti-neutrino spectroscopy with large water Cherenkov detectors. Phys. Rev. Lett. 2004, 93, 171101. [Google Scholar] [CrossRef] [Green Version]
- Marti, L.; Ikeda, M.; Kato, Y.; Kishimoto, Y.; Nakahata, M.; Nakajima, Y.; Zhang, H. Evaluation of gadolinium’s action on water Cherenkov detector systems with EGADS. Nucl. Instrum. Meth. A 2020, 959, 163549. [Google Scholar] [CrossRef]
- Abe, K.; Bronner, C.; Hayato, Y.; Hiraide, K.; Ikeda, M.; Imaizumi, S.; Horai, T. First Gadolinium Loading to Super-Kamiokande. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 1027, 166248. [Google Scholar] [CrossRef]
- Li, S.W.; Beacom, J.F. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers. Phys. Rev. D 2015, 91, 105005. [Google Scholar] [CrossRef] [Green Version]
- Li, S.W.; Beacom, J.F. Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors. Phys. Rev. D 2015, 92, 105033. [Google Scholar] [CrossRef] [Green Version]
- Maksimović, D.; Nieslony, M.; Wurm, M. CNNs for enhanced background discrimination in DSNB searches in large-scale water-Gd detectors. J. Cosmol. Astropart. Phys. 2021, 11, 051. [Google Scholar] [CrossRef]
- Abe, K.; Adrich, P.; Aihara, H.; Akutsu, R.; Alekseev, I.; Ali, A.; Inoue, K. Supernova Model Discrimination with Hyper-Kamiokande. Astrophys. J. 2021, 916, 15. [Google Scholar] [CrossRef]
- Abusleme, A.; Adam, T.; Ahmad, S.; Ahmed, R.; Aiello, S.; Akram, M.; Hellmuth, P. Calibration Strategy of the JUNO Experiment. J. High Energy Phys. 2021, 3, 004. [Google Scholar] [CrossRef]
- Abusleme, A.; Adam, T.; Ahmad, S.; Aiello, S.; Akram, M.; Ali, N.; Hellmuth, P. TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution. arXiv 2020, arXiv:2005.08745. [Google Scholar]
- Andreopoulos, C.; Bell, A.; Bhattacharya, D.; Cavanna, F.; Dobson, J.; Dytman, S.; Gallagher, H.; Guzowski, P.; Hatcher, R.; Kehayias, P. The GENIE Neutrino Monte Carlo Generator. Nucl. Instrum. Meth. A 2010, 614, 87–104. [Google Scholar] [CrossRef] [Green Version]
- Golan, T.; Sobczyk, J.T.; Zmuda, J. NuWro: The Wroclaw Monte Carlo Generator of Neutrino Interactions. Nucl. Phys. B Proc. Suppl. 2012, 229, 499. [Google Scholar] [CrossRef]
- Koning, A.J.; Hilaire, S.; Duijvestijn, M.C. TALYS: Comprehensive Nuclear Reaction Modeling. AIP Conf. Proc. 2005, 769, 1154. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.F.; Lu, H.Q.; Wen, L.J. Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for insitu measurements. Phys. Rev. D 2021, 103, 053002. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.F.; Wen, L.J.; Zhou, S. Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors: I. model predictions. Phys. Rev. D 2021, 103, 053001. [Google Scholar] [CrossRef]
- Cheng, J. Detection of the Diffuse Supernova Neutrino Background with JUNO. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 13–23 July 2021; p. 1187. [Google Scholar] [CrossRef]
Parameter | Successful SNe | Failed SNe | ||
---|---|---|---|---|
Total energy [erg] | ||||
Mean energy [MeV] | 15 | (12 .. 18) | 18.72 | |
Relative fraction | 0.73 | 0.27 | (0 .. 0.4) | |
Present SN rate |
Fiducial | Signal | Signal | Background | ||
---|---|---|---|---|---|
Experiment | Mass [kt] | Time Range | Efficiency | Rate [yr] | Rate [yr] |
SK-Gd | 22.5 | 8/20–06/22 | 50% | 1.7 | 0.8 |
7/22– | 75% | 2.5 | 1.2 | ||
JUNO | 17.0 | 1/23– | 50% | 1.4 | 0.7 |
Mesuring | Signal | Background | Sensitivity | |
---|---|---|---|---|
Experiment | Time [yrs] | (S) | (B) | () |
SK-Gd | 11 | 26 | 12 | 4.1 |
JUNO | 8.5 | 12 | 6 | 2.7 |
total | 38 | 18 | 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-F.; Vagins, M.; Wurm, M. Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO. Universe 2022, 8, 181. https://doi.org/10.3390/universe8030181
Li Y-F, Vagins M, Wurm M. Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO. Universe. 2022; 8(3):181. https://doi.org/10.3390/universe8030181
Chicago/Turabian StyleLi, Yu-Feng, Mark Vagins, and Michael Wurm. 2022. "Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO" Universe 8, no. 3: 181. https://doi.org/10.3390/universe8030181
APA StyleLi, Y. -F., Vagins, M., & Wurm, M. (2022). Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO. Universe, 8(3), 181. https://doi.org/10.3390/universe8030181