Development of Two-Phase Emission Detectors in Russia
Abstract
:1. Introduction
2. TPED Technology Development
2.1. Two-Phase Emission Spark Chamber
2.2. Two-Phase Emission Streamer Chamber
2.3. Ionization TPED
2.4. TPED Using Gas Gain Technology
2.5. Electroluminescence TPED
3. Dark Matter Search Experiments
Project | Detector Mass, Total/Feducial, kg | Sensitivity, 10−44 cm2 | Location, Years on Duty | Status | Reference |
---|---|---|---|---|---|
XENON10 | 25/5 LXe | 8.8 @ 100 GeV/c2 5.5 @ 30 GeV/c2 | GS, 2006/2007 | Completed | [37] |
XENON100 | 100/10 LXe | 0.2 @ 100 GeV/c2 | GS, 2008/2009 | Completed | [41] |
XENON1T | 3500/1300 LXe | 4.1 × 10−3 @ 30GeV/c2 | GS, 2014 | Completed | [42] |
XENONnT | 5900/4000 LXe | 1.4 × 10−4 @ 50GeV/c2 | GS, 2020 | Active | [40] |
DARWIN | 50,000/4000 LXe | ~10−5 @ 5GeV/c2 | GS, 2023 | Project | [36] |
ZEPLIN II | 31/8 LXe | 66 @ 55 GeV/c2 | BM, 2006/2007 | Completed | [43] |
ZEPLIN III | 12/6.5 LXe | 0.18 @ 55 GeV/c2 | BM, 2008/2009 | Completed | [44] |
LUX | 370/118 LXe | 0.07 @ 100 GeV/c2 | H, 2009–2016 | Completed | [39] |
WARP10 | 10/2.6 Lar | 75 @ 100 GeV/c2 | GS, 2006–2008 | Completed | [45] |
WARP100 | 100 Lar | 1 @ 100 GeV/c2 | GS, 2008–2010 | Completed | [45] |
DarkSide-50 | 46 Lar | 6.1 @ 100 GeV/c2 | GS, 2013–2015 | Completed | [46] |
DarkSide-20k | 23/20,000 LAr | 1.2 × 10−3 @ 1 TeV/c2 | GS, 2017 | Active | [47] |
LZ | 7000/5600 LXe | 1.5 × 10−4 @ 40 GeV/c2 | H, 2020 | Active | [35] |
PandaX-I | 250 LXe | 3.7 @ 49 GeV/c2 | CJPL, 2014 | Completed | [48] |
PandaX-II | 580 LXe | 3.1 × 10−6 @30 GeV/c2 | CJPL, 2017 | Completed | [49] |
PandaX-4T | 3700 LXe | 3.8 × 10−7 @40 GeV/c2 | CJPL, 2020 | Active | [50] |
4. Accelerator Neutrino Experiments
5. Nuclear Reactor Neutrino Experiments
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sidorov, I.V. Cryogenic streamer chamber. In Book 3d ITEP School, 4th ed.; Atomizdat: Moscow, Russia, 1975; pp. 52–60. (In Russian) [Google Scholar]
- Rodionov, B.U. Study of Processes on Tracks of Ionizing Particles in Noble Gases and Liquids and the Possibility of Developing a Controlled Track Detector Based on Liquefied Noble Gases. Ph.D Thesis, Moscow Engineering Physics Institute, USSR, Moscow, Russia, 1969. (In Russian). [Google Scholar]
- Dolgoshein, B.A.; Lebedenko, V.N.; Rodionov, B.U. New method of registration of ionizing particle tracks in condensed matter. JETP Lett. 1970, 11, 351–353. [Google Scholar]
- Bolozdynya, A.; Egorov, V.; Korshunov, A.A.; Sokolov, L.I.; Miroshnichenko, V.P.; Rodionov, B.U. The first observation of particle tracks in condensed matter obtained by the emission method. Lett. JETP 1977, 25, 401–404. (In Russian) [Google Scholar]
- Bolozdynya, A.I.; Egorov, O.K.; Miroshnichenko, V.P.; Rodionov, B.U.; Shuvalova, E.N. A new possibility to search for low-ionizing particles. In Book Elementary Particles and Cosmic Rays; Atomizdat: Moscow, Russia, 1980; Volume 5, pp. 65–72. (In Russian) [Google Scholar]
- Bolozdynya, A. Emission Detectors; World Scientific Publishing Co.: Singapore, 2010. [Google Scholar] [CrossRef]
- Anisimov, S.N.; Barabash, A.S.; Bolozdynya, A.I.; Stekhanov, V.N. Control of electro-negative impurities contents in liquid krypton with emission detector. Instrum. Exp. Tech. 1989, 1, 79–82. (In Russian) [Google Scholar]
- Anisimov, S.N.; Barabash, A.S.; Bolozdynya, A.I.; Stekhanov, V.N. Measuring the 85Kr content in krypton using a liquid ionization chamber. Atomic Energy 1989, 66, 415–417. (In Russian) [Google Scholar]
- Hutchinson, G.W. Ionization in liquid and solid argon. Nature 1948, 162, 610–611. [Google Scholar] [CrossRef]
- Boriev, I.A.; Balakin, A.A.; Yakovlev, B.S. Electron emission from non-polar liquids. High Energy Chem. 1978, 12, 20–25. (In Russian) [Google Scholar]
- Gushchin, E.M.; Kruglov, A.A.; Obodovski, I.M. Electron dynamics in condensed argon and xenon. Sov. Phys. JETP 1982, 55, 650–655. [Google Scholar]
- Gushchin, E.M.; Kruglov, A.A.; Obodovski, I.M. Emission of “hot” electrons from liquid and solid argon and xenon. Sov. Phys. JETP 1982, 55, 860–862. [Google Scholar]
- Bolozdynya, A.I.; Stekhanov, V.N. Capture of Quasi-Free Electrons by Oxygen in Condensed Krypton; Preprint ITEP: Moscow, Russia, 1984; p. 20. (In Russian) [Google Scholar]
- Bolozdynya, A.I. To Electron Emission from Liquid Isooctane; Preprint ITEP: Moscow, Russia, 1986; p. 8. (In Russian) [Google Scholar]
- Bolozdynya, A.I. Excess Electron Emission from Condensed Krypton and Other Nonpolar Dielectrics; Preprint ITEP, CNIIatominform: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Charpak, G.; Bouclier, R.; Bressani, T.; Favier, J.; Zupančič, C. The use of multiwire proportional counters to select and localize charged particles. Nucl. Instrum. Meth. 1968, 62, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Dolgoshein, B.A.; Lebedenko, V.N.; Rodionov, B.U. Some electron methods of detection of particle tracks in liquids. Elem. Part. Cosm. Rays 1973, 3, 86–91. (In Russian) [Google Scholar]
- Akimov, D.Y.; Bolozdynya, A.I.; Buzulutskov, A.F.; Chepel, V. Two-Phase Emission Detectors; World Scientific Publihing Co.: Singapore, 2021; p. 352. [Google Scholar] [CrossRef]
- Anderson, D.I.; Charpak, G.; Holroyd, R.A.; Lamb, D.C. Liquid ionization chambers with electron extraction and multiplication in the gaseous phase. Nucl. Instrum. Meth. A 1987, 261, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Sauli, F. The gas electron multiplier (GEM): Operating principles and applications. Nucl. Instr. Meth. A 2016, 805, 2–24. [Google Scholar] [CrossRef]
- Bondar, A.; Buzulutskov, A.; Grebennuk, A.; Pavlyuchenko, D.; Snopkov, R.; Tikhonov, Y. Two-phase argon and xenon avalanche detectors based on Gas Electron Multipliers. Nucl. Instr. Meth. A 2006, 556, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Chechik, R.; Breskin, A.; Shalem, C.; Mörmann, D. Thick GEM-like hole multipliers: Properties and possible applications. Nucl. Instrum. Meth. A 2004, 535, 303–308. [Google Scholar] [CrossRef]
- Bondar, A.; Buzulutskov, A.; Grebennuk, A.; Pavlyuchenko, D.; Tikhonov, Y.; Breskin, A. Thick GEM versus thin GEM in two-phase argon avalanche detectors. J. Instrum 2008, 3, P07001. [Google Scholar] [CrossRef]
- Cantini, C.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Natterer, G.; Periale, L.; Regenfus, C.; Resnati, F.; Rubbia, A.; et al. Recent R&D results on LAr LEM TPC and plans for LBNO demonstrators. J. Phys. Conf. Ser. 2015, 650, 012011. [Google Scholar] [CrossRef]
- Adams, D.L.; Baird, M.; Barr, G.; Barros, N.; Blake, A.; Blaufuss, E.; Booth, A.; Brailsford, D.; Buchanan, N.; Carls, B.; et al. Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors. JINST 2020, 15, P03035. [Google Scholar] [CrossRef]
- Aalseth, C.E.; Abdelhakim, S.; Agnes, P.; Ajaj, R.; Albuquerque, I.F.M.; Alexander, T.; Alici, A.; Alton, A.K.; Amaudruz, P.; Ameli, F.; et al. SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range. Eur. Phys. J. C 2021, 81, 153. [Google Scholar] [CrossRef]
- Buzulutskov, A. Electroluminescence and electron avalanching in two-phase detectors. Instruments 2020, 4, 16. [Google Scholar] [CrossRef]
- Lansiart, A.; Seigneur, A.; Moretti, J.-L.; Morucci, J.P. Development research on a highly luminous condensed xenon scintillator. Nucl. Instrum. Meth. 1976, 135, 47–52. [Google Scholar] [CrossRef]
- Bolozdynya, A.I.; Miroshnichenko, V.P.; Rodionov, B.U. Electrostatic emission of free electrons from liquid and solid argon. Lett. JTP 1977, 2, 64–67. (In Russian) [Google Scholar]
- Egorov, V.V.; Miroshnichenko, V.P.; Rodionov, B.U.; Bolozdynya, A.I.; Kalashnikov, S.D.; Krivoshein, V.L. Electroluminescence emission gamma-camera. Nucl. Instrum. Meth. 1983, 205, 373–374. [Google Scholar] [CrossRef]
- Bolozdynya, A.; Egorov, V.; Rodionov, B.; Miroshnichenko, V. Emission detectors. IEEE Trans. Nucl. Sci. 1995, 42, 565–569. [Google Scholar] [CrossRef]
- Bolozdynya, A.; Egorov, V.; Koutchenokov, A.; Safronov, G.; Smirnov, G.; Medved, S.; Morgunov, V. A high pressure xenon self-triggered scintillation drift chamber with 3D sensitivity in the range of 20–140 keV deposited energy. Nucl. Instrum. Meth. A 1997, 385, 225–238. [Google Scholar] [CrossRef]
- Bolozdynya, A.; Egorov, V.; Koutchenokov, A.; Safronov, G.; Smirnov, G.; Medved, S.; Morgunov, V. An electroluminescence emission detector to search for double beta positron decays of 134Xe and 78Kr. IEEE Trans. Nucl. Sci. 1997, 44, 1046–1051. [Google Scholar] [CrossRef]
- Aprile, E.; XENON Collaboration; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L. Dark matter search results from a one tonne×year exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S.; Akerlof, C.W.; Akimov, D.Y.; Alquahtani, A.; Alsum, S.K.; Anderson, T.J.; Angelides, N.; Araujo, H.M.; Arbuckle, A.; Armstrong, J.E.; et al. The LUX-ZEPLIN (LZ) experiment. Nucl. Instrum. Meth. A 2020, 953, 163047. [Google Scholar] [CrossRef] [Green Version]
- Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; et al. DARWIN: Towards the ultimate dark matter detector. JCAP 2016, 1611, 11017. [Google Scholar] [CrossRef]
- Angle, J.; Aprile, E.; Arneodo, F.; Baudis, L.; Bernstein, A.; Bolozdynya, A.; Brusov, P.; Coelho, L.C.C.; Dahl, C.E.; De Viveiros, L.; et al. First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. Phys. Rev. Lett. 2008, 100, 021303. [Google Scholar] [CrossRef] [Green Version]
- Orrigo, S.E.A.; on behalf of XENON collaboration. Direct dark matter search with XENON100. In Proceedings of the 5th Roma International Conference on Astroparticle Physics RICAP-14: Noto, Sicily, Italy, 30 September–3 October 2014; Volume 121, p. 06006. [Google Scholar]
- Woodward, D.; on behalf LUX collaboration. Latest results of the LUX dark matter experiment. Int. J. Mod. Phys. Conf. Ser. 2020, 50, 2060002. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Angevaare, J.R.; Arneodo, F.; et al. Projected WIMP sensitivity of the XENONnT dark matter experiment. JCAP 2020, 11, 031. [Google Scholar] [CrossRef]
- Aprile, E.; Baudis, L.; Choi, B.; Giboni, K.L.; Lim, K.; Manalaysay, A.; Monzani, M.E.; Plante, G.; Santorelli, R.; Yamashita, M. New measurement of the relative scintillation efficiency of xenon nuclear recoils below 10 keV. Phys. Rev. C 2009, 79, 045807. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Angevaare, J.R.; Arneodo, F.; et al. Excess electronic recoil events in XENON1T. Phys. Rev. D 2020, 102, 072004. [Google Scholar] [CrossRef]
- Alner, G.J.; Araújo, H.M.; Bewick, A.; Bungau, C.; Camanzi, B.; Carson, M.J.; Cashmore, R.J.; Chagani, H.; Chepel, V.; Cline, D.; et al. First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection. Astropart. Phys. 2007, 28, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Lebedenko, V.N.; Araújo, H.M.; Barnes, E.J.; Bewick, A.; Cashmore, R.; Chepel, V.; Currie, A.; Davidge, D.; Dawson, J.; Durkin, T.; et al. Results from the first science run of the ZEPLIN-III dark matter search experiment. Phys. Rev. D 2009, 80, 052010. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Antonello, M.; Baibussinov, B.; Benetti, P.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Canci, N.; Cao, C.; Carbonara, F.; et al. The WArP experiment. J. Phys. Conf. Ser. 2011, 308, 012005. [Google Scholar] [CrossRef] [Green Version]
- Benetti, P.; Acciarri, R.; Adamo, F.; Baibussinov, B.; Baldo-Ceolin, M.; Belluco, M.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Carbonara, F.; et al. First results from a dark matter search with liquid Argon at 87 K in the Gran Sasso Underground Laboratory. Astropart. Phys. 2008, 28, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Acerabi, F.; Agnes, P.; Albuquerque, I.F.M.; Alexander, T.; Alici, A.; Alton, A.K.; Antonioli, P.; Arcelli, S.; Ardito, R.; et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 2018, 133, 131. [Google Scholar] [CrossRef]
- Xiao, M.; Xiao, X.; Zhao, L.; Cao, X.G.; Chen, X.; Chen, Y.H.; Cui, X.Y.; Fang, D.Q.; Fu, C.B.; Giboni, K.L.; et al. First dark matter search results from the PandaX-I experiment. Sci. China Phys. Mech. Astron. 2014, 57, 2024. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Xie, P.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Cui, X.; Fan, Y.; Fang, D.; Fu, C.; et al. Search for light dark matter–electron scattering in the PandaX-II Experiment. Phys. Rev. Lett. 2021, 126, 211803. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Z.; Tao, Y.; Abdukerim, A.; Bo, Z.; Chen, W.; Chen, X.; Chen, Y.; Cheng, C.; Cheng, Y.; et al. Dark matter search results from the PandaX-4T commissioning run. Phys. Rev. Lett. 2021, 127, 261802. [Google Scholar] [CrossRef] [PubMed]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; et al. (DUNE collaboration). Deep underground neutrino experiment (DUNE). far detector technical design report, volume I: Introduction to DUNE. JINST 2020, 15, T08008. [Google Scholar] [CrossRef]
- Cuesta, C. Status of ProtoDUNE Dual Phase. arXiv 2019, arXiv:1910.10115. [Google Scholar]
- Akimov, D.; Albert, J.B.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Brown, A.; Bolozdynya, A.; Cabrera-Palmer, B.; et al. Observation of coherent elastic neutrino-nucleus scattering. Science 2017, 357, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopeliovich, V.B.; Frankfurt, L.L. On the isotopic and chiral structure of the neutral current. Lett. JETP 1974, 19, 236–239. (In Russian) [Google Scholar]
- Freedman, D.Z. Coherent effects of a weak neutral current. Phys. Rev. D 1974, 9, 1389–1392. [Google Scholar] [CrossRef]
- Lubashevskiy, A. First Results of the nuGeN Experiment. Talk given at Magnificent CEvNS 2021, 6–7 October 2021. Available online: https://indico.cern.ch/event/1075677/contributions/4556660/ (accessed on 10 December 2021).
- Akimov, D.Y.; Belov, V.A.; Bolozdynya, A.I.; Dolgolenko, A.G.; Efremenko, Y.V.; Etenko, A.V.; Galavanov, A.V.; Gouss, D.V.; Gusakov, Y.V.; Kdib, D.E.; et al. First ground-level laboratory test of the two-phase xenon emission detector RED-100. J. Instrum. 2020, 15, P02020. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akimov, D.; Bolozdynya, A. Development of Two-Phase Emission Detectors in Russia. Universe 2022, 8, 139. https://doi.org/10.3390/universe8030139
Akimov D, Bolozdynya A. Development of Two-Phase Emission Detectors in Russia. Universe. 2022; 8(3):139. https://doi.org/10.3390/universe8030139
Chicago/Turabian StyleAkimov, Dmitry, and Alexander Bolozdynya. 2022. "Development of Two-Phase Emission Detectors in Russia" Universe 8, no. 3: 139. https://doi.org/10.3390/universe8030139