Stirred Kardar-Parisi-Zhang Equation with Quenched Random Noise: Emergence of Induced Nonlinearity
Abstract
:1. Introduction
2. Formulation of the Problem
3. Field Theoretic Formulation and Renormalization of the Model
3.1. Field Theoretic Formulation
3.2. UV Divergences and Renormalization
4. RG Equation, Fixed Points, Critical Exponents
4.1. RG Equation, RG Functions
4.2. Fixed Points, Stability Regions
- FP1a (fixed point 1a) with IR stability region .
- FP2 , with IR stability region . Note that this point is actually two points (as there are two roots of the equation ) that share the same stability region.
- FP3 , , with IR stability region (for all four combinations of the roots).
- FP4 , , with IR stability region (for all 4 combinations of the roots).
- FP5 , , with IR stability region (for both roots).
- FP6 , with empty IR stability region (for both roots).
- FP1b , arbitrary with IR stability region ;
- FP7 with IR stability region ;
- FP8 with empty IR stability region.
4.3. Critical Exponents
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
1 | To be precise, an equivalent model was introduced much earlier in terms of a vector field in a seminal paper by Forster, Nelson and Stephen [4]. There, among other relevant models, the stochastic d-dimensional generalization of the Burgers equation was studied in connection with problem of long-time tails in hydrodynamic description of fluids. |
2 | Giorgio Parisi was awarded the Nobel Prize in Physics 2021 “for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales” [5]. |
3 | Regarding the upper critical dimension (UCD), it should be noted that in the field theoretic approach to stochastic models analysis, the term “UCD” is used for the dimension above which the critical exponents are given by the mean-field theory [44]. This UCD generally coincides with the logarithmic dimension above which all the interactions become IR irrelevant in the sense of Wilson; see, e.g., Section 1.16 in [44]. In the study of fluctuating surfaces, however, the “UCD” means something different and stands for the dimension below which a surface is rough and above which it is smooth. While the logarithmic dimension can be easily found for a renormalizable model, calculation of thus defined UCD requires significantly more effort. For the KPZ equation, not only there is no consensus on the value of UCD, but even its existence is under a question [3,19,20,34,35,36,37,38,39,40,41,42,43]. |
4 | In other words, the random noise is assumed to have Gaussian probability distribution with the correlation function (1). |
5 |
References
- Kardar, M.; Parisi, G.; Zhang, Y.-C. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett. 1986, 56, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, J.; Spohn, H. Solids far from Equilibrium; Godreche, C., Ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Halpin-Healy, T.; Zhang, Y.-C. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 1995, 254, 215. [Google Scholar] [CrossRef]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid. Phys. Rev. Lett. 1976, 36, 867. [Google Scholar] [CrossRef]
- Giorgio Parisi–Facts–2021. NobelPrize.org. Nobel Prize Outreach AB 2021. Mon. 11 Oct 2021. Available online: https://www.nobelprize.org/prizes/physics/2021/parisi/facts/ (accessed on 14 December 2021).
- Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A. A theory of stochastic resonance in climate changes. SIAM J. Appl. Math. 1983, 43, 565. [Google Scholar] [CrossRef]
- Feigenbaum, M.J.; Procaccia, I.; Davidovich, B. Dynamics of Finger Formation in Laplacian Growth Without Surface Tension. J. Stat. Phys. 2001, 103, 973–1007. [Google Scholar] [CrossRef]
- Schmittmann, B.; Zia, R.K.P. Driven diffusive systems: An introduction and recent developments. Phys. Rep. 1998, 301, 5–64. [Google Scholar] [CrossRef] [Green Version]
- Adzhemyan, L.T.; Antonov, N.V.; Vasil’ev, A.N. Quantum field renormalization group in the theory of fully developed turbulence. Usp. Fiz. Nauk 1998, 166, 1257, [In Russian, Engl. Transl.: Phys.-Usp. 1996, 39, 1193.]. [Google Scholar] [CrossRef]
- Adzhemyan, L.T.; Antonov, N.V.; Vasil’ev, A.N. The Field Theoretic Renormalization Group in Fully Developed Turbulence; Gordon & Breach: London, UK, 1999. [Google Scholar]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus: New York, NY, USA, 1996. [Google Scholar]
- Pruessner, G. Self-Organized Criticality: Theory, Models and Characterisation; Cambridge University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Muñoz, M.A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 2018, 90, 031001. [Google Scholar] [CrossRef] [Green Version]
- Marković, D.; Gros, C. Power laws and self-organized criticality in theory and nature. Phys. Rep. 2014, 536, 41. [Google Scholar] [CrossRef] [Green Version]
- Corwin, I. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 2012, 1, 1130001. [Google Scholar] [CrossRef]
- Takeuchi, K.A. An appetizer to modern developments on the Kardar-Parisi-Zhang universality class. Phys. A 2018, 504, 77. [Google Scholar] [CrossRef] [Green Version]
- Strack, P. Dynamic criticality far from equilibrium: One-loop flow of Burgers-Kardar-Parisi-Zhang systems with broken Galilean invariance. Phys. Rev. E 2015, 91, 032131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niggemann, O.; Hinrichsen, H. Sinc noise for the Kardar-Parisi-Zhang equation. Phys. Rev. E 2018, 97, 062125. [Google Scholar] [CrossRef] [Green Version]
- Katzav, E.; Schwartz, M. Existence of the upper critical dimension of the Kardar-Parisi-Zhang equation. Phys. A 2002, 309, 69. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.G.; Oliveira, T.J.; Ferreira, S.C. Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension. Phys. Rev. E 2014, 90, 020103(R). [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, E.; Sieberer, L.M.; Chen, L.; Diehl, S.; Toner, J. Two-dimensional superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X 2015, 5, 011017. [Google Scholar] [CrossRef]
- Ji, K.; Gladilin, V.N.; Wouters, M. Temporal coherence of one-dimensional nonequilibrium quantum fluids. Phys. Rev. B 2015, 91, 045301. [Google Scholar] [CrossRef] [Green Version]
- Deligiannis, K.; Squizzato, D.; Minguzzi, A.; Canet, L. Accessing Kardar-Parisi-Zhang universality sub-classes with exciton polaritons (a). EPL (Europhys. Lett.) 2020, 132, 67004. [Google Scholar] [CrossRef]
- Squizzato, D.; Canet, L. Kardar-Parisi-Zhang equation with temporally correlated noise: A nonperturbative renormalization group approach. Phys. Rev. E 2020, 100, 062143. [Google Scholar] [CrossRef] [Green Version]
- Najem, S.; Krayem, A.; Ala-Nissila, T.; Grant, M. Kinetic roughening of the urban skyline. Phys. Rev. E 2020, 101, 050301(R). [Google Scholar] [CrossRef]
- Lässig, M. On the renormalization of the Kardar-Parisi-Zhang equation. Nucl. Phys. B 1995, 448, 559. [Google Scholar] [CrossRef] [Green Version]
- Wiese, K.J. On the perturbation expansion of the KPZ equation. J. Stat. Phys. 1998, 93, 143. [Google Scholar] [CrossRef] [Green Version]
- Canet, L.; Chaté, H.; Delamotte, B.; Wschebor, N. Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 2010, 104, 150601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canet, L.; Chaté, H.; Delamotte, B.; Wschebor, N. Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: General framework and first applications. Phys. Rev. E 2011, 84, 061128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloss, T.; Canet, L.; Wschebor, N. Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: Scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. Phys. Rev. E 2012, 86, 051124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathey, S.; Agoritsas, E.; Kloss, T.; Lecomte, V.; Canet, L. Kardar-Parisi-Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables. Phys. Rev. E 2017, 95, 032117. [Google Scholar] [CrossRef] [Green Version]
- Täuber, U.C.; Howard, M.; Vollmayr-Lee, B.P. Applications of field-theoretic renormalization group methods to reaction-diffusion problems. J. Phys. A Math. Gen. 2005, 38, R79. [Google Scholar] [CrossRef] [Green Version]
- Cooper, F.; Dawson, J.F. Auxiliary field loop expansion of the effective action for a class of stochastic partial differential equations. Ann. Phys. 2016, 365, 118. [Google Scholar] [CrossRef]
- Lässig, M.; Kinzelbach, H. Upper critical dimension of the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 1997, 78, 903. [Google Scholar] [CrossRef]
- Colaiori, F.; Moore, M. Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 2001, 86, 3946. [Google Scholar] [CrossRef] [Green Version]
- Fogedby, H.C. Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang Equation in the weak-noise limit. Phys. Rev. Lett. 2005, 94, 195702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogedby, H.C. Kardar-Parisi-Zhang equation in the weak noise limit: Pattern formation and upper critical dimension. Phys. Rev. E 2006, 73, 031104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogedby, H.C. Patterns in the Kardar-Parisi-Zhang equation. J. Phys. (Pramana) 2008, 71, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.A.; Mello, B.A.; Oliveira, F.A. Growth exponents of the etching model in high dimensions. J. Phys. A Math. Theor. 2015, 48, 035001. [Google Scholar] [CrossRef] [Green Version]
- Castellano, C.; Marsili, M.; Pietronero, L. Nonperturbative renormalization of the Kardar-Parisi-Zhang growth dynamics. Phys. Rev. Lett. 1998, 80, 3527. [Google Scholar] [CrossRef] [Green Version]
- Castellano, C.; Gabrielli, A.; Marsili, M.; Muñoz, M.A.; Pietronero, L. High dimensional behavior of the Kardar-Parisi-Zhang growth dynamics. Phys. Rev. E 1998, 58, R5209. [Google Scholar] [CrossRef] [Green Version]
- Marinari, E.; Pagnani, A.; Parisi, G.; Raćz, Z. Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces. Phys. Rev. E 2002, 65, 026136. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Filho, M.S.; Penna, A.L.A.; Oliveira, F.A. An exact solution for the 2 + 1 Kardar-Parisi-Zhang exponents. Results Phys. 2021, 104, 435. [Google Scholar]
- Vasiliev, A.N. The Field Theoretic Renormalization Group in Critical Behaviour Theory and Stochastic Dynamics; Chapman & Hall/CRC: Boca Raton, FL, USA, 1998; [Translated from the Russian: Institute of Nuclear Physics, Gatchina: St Petersburg, Russian, 1998; ISBN 5-86763-122-2.]. [Google Scholar]
- Pavlik, S.I. Scaling for a growing phase boundary with nonlinear diffusion. J. Exp. Theor. Phys. 1994, 79, 303, [Translated from the Russian: ZhETF 1994, 106, 553.]. [Google Scholar]
- Antonov, N.V.; Vasil’ev, A.N. The quantum-field renormalization group in the problem of a growing phase boundary. J. Exp. Theor. Phys. 1995, 81, 485, [Translated from the Russian: ZhETF 108, 885.]. [Google Scholar]
- Caldarelli, G.; Giacometti, A.; Maritan, A.; Rodriguez-Iturbe, I.; Rinaldo, A. Randomly pinned landscape evolution. Phys. Rev. E 1997, 55, R4865. [Google Scholar] [CrossRef] [Green Version]
- Czirók, A.; Somfai, E.; Vicsek, J. Experimental evidence for self-affine roughening in a micromodel of geomorphological evolution. Phys. Rev. Lett. 1993, 71, 2154. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, J.M. Depinning transition of the quenched Kardar-Parisi-Zhang equation. J. Korean Phys. Soc. 2005, 47, 13. [Google Scholar]
- Jeong, H.; Kahng, B.; Kim, D. Anisotropic surface growth model in disordered media. Phys. Rev. Lett. 1996, 25, 5094. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Kim, I.-M.; Kim, J.M. Hybridized discrete model for the anisotropic Kardar-Parisi-Zhang equation. Phys. Rev. E 1998, 58, 1144. [Google Scholar] [CrossRef]
- Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 2000, 49, 815–958. [Google Scholar] [CrossRef]
- Narayan, O.; Fisher, D.S. Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 1993, 48, 7030. [Google Scholar] [CrossRef]
- Janssen, H.K. Renormalized field theory of the Gribov process with quenched disorder. Phys. Rev. E 1997, 55, 6253. [Google Scholar] [CrossRef]
- Moreira, A.G.; Dickman, R. Critical dynamics of the contact process with quenched disorder. Phys. Rev. E 1996, 54, R3090. [Google Scholar] [CrossRef] [Green Version]
- Webman, I.; ben Avraham, D.; Cohen, A.; Havlin, S. Dynamical phase transitions in a random environment. Philos. Mag. B 1998, 77, 1401. [Google Scholar] [CrossRef]
- Duclut, C.; Delamotte, B. Nonuniversality in the erosion of tilted landscapes. Phys. Rev. E 2017, 96, 012149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Serov, V.D. Effects of turbulent environment and random noise on self-organized critical behavior: Universality versus nonuniversality. Phys. Rev. E 2021, 103, 042106. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Conserved Kardar-Parisi-Zhang equation: Role of quenched disorder in determining universality. Phys. Rev. E 2021, 103, 042102. [Google Scholar] [CrossRef] [PubMed]
- Imaeda, T.; Onuki, A.; Kawasaki, K. Anisotropic spinodal decomposition under shear flow. Progr. Theor. Phys. 1984, 71, 16. [Google Scholar] [CrossRef] [Green Version]
- Satten, G.; Ronis, D. Critical phenomena in randomly stirred fluids: Correlation functions, equation of motion, and crossover behavior. Phys. Rev. A 1986, 33, 3415. [Google Scholar] [CrossRef]
- Aronowitz, A.; Nelson, D.R. Turbulence in phase-separating binary mixtures. Phys. Rev. A 1984, 29, 2012. [Google Scholar] [CrossRef]
- Antonov, N.V.; Hnatich, M.; Honkonen, J. Effects of mixing and stirring on the critical behaviour. J. Phys. A Math. Gen. 2006, 39, 7867. [Google Scholar] [CrossRef]
- Antonov, N.V.; Ignatieva, A.A. Critical behaviour of a fluid in a random shear flow: Renormalization group analysis of a simplified model. J. Phys. A Math. Gen. 2006, 39, 13593. [Google Scholar] [CrossRef]
- Antonov, N.V.; Iglovikov, V.I.; Kapustin, A.S. Effects of turbulent mixing on the nonequilibrium critical behaviour. J. Phys. A Math. Theor. 2008, 42, 135001. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Kapustin, A.S.; Malyshev, A.V. Effects of turbulent transfer on critical behavior. Theor. Math. Phys. 2011, 169, 1470. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Kakin, P.I. Random interface growth in a random environment: Renormalization group analysis of a simple model. Theor. Math. Phys. 2015, 185, 1391. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M. The Kardar-Parisi-Zhang model of a random kinetic growth: Effects of a randomly moving medium. J. Phys. A Math. Theor. 2019, 52, 505002. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Kostenko, M.M. Effects of turbulent environment on the surface roughening: The Kardar-Parisi-Zhang model coupled to the stochastic Navier-Stokes equation. Phys. Scr. 2020, 95, 084009. [Google Scholar] [CrossRef]
- Falkovich, G.; Gawȩdzki, K.; Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys. 2001, 73, 913. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M. Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise. J. Stat. Phys. 2020, 178, 392. [Google Scholar] [CrossRef] [Green Version]
- Adzhemyan, L.T.; Antonov, N.V.; Vasiliev, A.N. Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar. Phys. Rev. E 1998, 58, 1823. [Google Scholar] [CrossRef] [Green Version]
- Heisenberg, W.; Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 1936, 98, 714–732. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1987; Volume 6. [Google Scholar]
- Doi, M. Stochastic theory of diffusion-controlled reaction. J. Phys. A 1976, 9, 1479. [Google Scholar] [CrossRef]
- Grassberger, P.; Scheunert, P. Fock-space methods for identical classical objects. Fortschritte Phys. 1980, 28, 547. [Google Scholar] [CrossRef]
- Peliti, L. Path integral approach to birth-death processes on a lattice. J. Phys. (Paris) 1984, 46, 1469. [Google Scholar] [CrossRef] [Green Version]
- Täuber, U.C. Dynamic Phase Transitions in Diffusion-Limited Reactions. Acta Phys. Slovaca 2002, 52, 505. [Google Scholar]
- Täuber, U.C. Scale invariance and dynamic phase transitions in diffusion-limited reactions. Adv. Solid State Phys. 2003, 43, 659. [Google Scholar]
- Täuber, U.C. Field Theory Approaches to Nonequilibrium Dynamics. Lect. Notes Phys. 2007, 716, 295. [Google Scholar]
- Täuber, U.C. Field Theoretic Methods. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2009; Volume 3360, ISBN 978-0-387-30440-3. [Google Scholar]
- Benitez, F.; Duclut, C.; Chaté, H.; Delamotte, B.; Dornic, I.; Muñoz, M.A. Langevin equations for reaction-diffusion processes. Phys. Rev. Lett. 2016, 117, 100601. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.L.; Claussen, N.R.; Cornish, S.L.; Donley, E.A.; Cornell, E.A.; Wieman, C.E. Controlled collapse of a Bose-Einstein condensate. Phys. Rev. Lett. 2001, 86, 4211. [Google Scholar] [CrossRef] [Green Version]
- Lieb, E.H.; Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 1963, 130, 1605. [Google Scholar] [CrossRef]
- Busiello, G.; De Cesare, L. The critical exponents η and z to second order in ϵ = 2 − d for a Bose system at T = 0. Phys. Lett. 1980, 77, 177. [Google Scholar] [CrossRef]
- Yakhot, V. Ultraviolet dynamic renormalization group: Small-scale properties of a randomly stirred fluid. Phys. Rev. A 1981, 23, 1486–1497. [Google Scholar] [CrossRef]
- Yakhot, V. Large-scale properties of unstable systems governed by the Kuramoto-Sivashinksi equation. Phys. Rev. A 1981, 24, 642–644. [Google Scholar] [CrossRef]
- Sivashinsky, G.; Yakhot, V. Negative viscosity effect in large-scale flows. Phys. Fluids 1985, 28, 1040–1042. [Google Scholar] [CrossRef]
- Avellaneda, M.; Vergassola, M. Scalar transport in compressible flow. Phys. D Nonlinear Phenom. 1997, 106, 148–166. [Google Scholar]
- Pelletier, G. Langmuir turbulence as a critical phenomenon. Part 2. Application of the dynamical renormalization group method. J. Plasma Phys. 1980, 24, 421–443. [Google Scholar] [CrossRef]
- Adzhemyan, L.T.; Vasil’ev, A.N.; Gnatich, M.; Pis’mak, Y.M. Quantum field renormalization group in the theory of stochastic Langmuir turbulence. Theor. Math. Phys. 1989, 78, 260–272. [Google Scholar] [CrossRef]
- Täuber, U.C.; Diehl, S. Perturbative field-theoretical renormalization group approach to driven-dissipative Bose-Einstein criticality. Phys. Rev. X 2014, 4, 021010. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Kostenko, M.M. Renormalization Group in the Problem of Active Scalar Advection. J. Math. Sci. 2021, 257, 425–441. [Google Scholar] [CrossRef]
- Lässig, M. Quantized scaling of growing surfaces. Phys. Rev. Lett. 1998, 80, 2366. [Google Scholar] [CrossRef] [Green Version]
- Duplantier, B.; Ludwig, A.W.W. Multifractals, operator-product expansion, and field theory. Phys. Rev. Lett. 1991, 66, 247. [Google Scholar] [CrossRef]
- Eyink, G.L. Lagrangian field theory, multifractals, and universal scaling in turbulence. Phys. Lett. A 1993, 172, 355. [Google Scholar] [CrossRef]
- Altaiskiy, M.; Hnatich, M.; Horvath, D.; Moiseev, S.S. Self-similarity and the renormalization group in hydrodynamic turbulence theory. In Proceedings of the 3rd International Conference, RG’96, Dubna, Russia, 26–31 August 1996; Volume 12, p. 1247. [Google Scholar]
F | h | g, w, x | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 | |||
1 | 0 | ||||||||
1 | 0 | 1 | 0 |
, | 2 | |||
0 | d | |||
0 | 1 | d | ||
0 | d | |||
0 | d | |||
0 | d | |||
2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakin, P.I.; Reiter, M.A.; Tumakova, M.M.; Gulitskiy, N.M.; Antonov, N.V. Stirred Kardar-Parisi-Zhang Equation with Quenched Random Noise: Emergence of Induced Nonlinearity. Universe 2022, 8, 72. https://doi.org/10.3390/universe8020072
Kakin PI, Reiter MA, Tumakova MM, Gulitskiy NM, Antonov NV. Stirred Kardar-Parisi-Zhang Equation with Quenched Random Noise: Emergence of Induced Nonlinearity. Universe. 2022; 8(2):72. https://doi.org/10.3390/universe8020072
Chicago/Turabian StyleKakin, Polina I., Mikhail A. Reiter, Maria M. Tumakova, Nikolay M. Gulitskiy, and Nikolay V. Antonov. 2022. "Stirred Kardar-Parisi-Zhang Equation with Quenched Random Noise: Emergence of Induced Nonlinearity" Universe 8, no. 2: 72. https://doi.org/10.3390/universe8020072
APA StyleKakin, P. I., Reiter, M. A., Tumakova, M. M., Gulitskiy, N. M., & Antonov, N. V. (2022). Stirred Kardar-Parisi-Zhang Equation with Quenched Random Noise: Emergence of Induced Nonlinearity. Universe, 8(2), 72. https://doi.org/10.3390/universe8020072