# Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. QED Effective Lagrangean and Semi-Minimal Torsion–Photon Coupling ${\mathbf{RF}}^{\mathbf{2}}$

## 3. Galactic Dynamo Seeds in ${\mathbf{RF}}^{\mathbf{2}}$ Semi-Minimal Coupling

## 4. Torsion Chirality QED Magnetogenesis

## 5. Scalar Gravity–Torsion Sector in Static DW

## 6. Decay of Chiral Magnetic Field Seeds in Scalar Higgs-like Sector Einstein–Cartan Static DWs

## 7. Conclusions and Outlook

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Shaposhnikov, M.; Shkerin, A.; Timiryasov, I.; Zell, S. Einstein-Cartan Portal to Dark Matter. Phys. Rev. Lett.
**2021**, 126, 161301. [Google Scholar] [CrossRef] [PubMed] - de Sabbata, V.; Sivaram, C. Spin and Torsion Gravitation; World Scientific: Singapore; New York, NY, USA, 1994. [Google Scholar]
- Garcia de Andrade, L. Einstein-Cartan-Holst gravity, chiral dynamos and GWs. Can. J. Phys.
**2023**, in press. [Google Scholar] - Karananas, G.K.; Shaposhnikov, M.; Timiryasov, I.; Zell, S. Scale and Weyl Invariance in Einstein-Cartan Gravity. Phys. Rev. Lett.
**2021**, arXiv:2108.05897v2. [Google Scholar] [CrossRef] - Bassett, B.A.; Polifrone, G.; Tsujikawa, S.; Viniegra, F. Preheating; magnetic cosmic dynamo. Phys. Rev. D
**2001**, 63, 023506. [Google Scholar] [CrossRef] - Garcia de Andrade, L. Topology in Einstein-Cartan Magnetogenesis and Dynamo Effects; Lambert Academic Publishers: Chisinau, Moldavia, 2021. [Google Scholar]
- Garcia de Andrade, L.C. Chiral and non-chiral spinning string dynamo instability from quantum torsion sources. Ann. Phys.
**2022**, 436, 168666. [Google Scholar] - Shukurov, A. Astrophysical Magnetic Fields-From Galaxies to the Early Universe; Cambridge Astrophysics Monographs: Cambridge, UK, 2022; Volume 56. [Google Scholar]
- Schober, J.; Rogachevskii, I.; Brandenburg, A. Dynamo instabilities in plasmas with inhomogemeous chiral chemical potential. Phys. Rev. D
**2022**, 105, 043507. [Google Scholar] [CrossRef] - Schober, J.; Rogachevskii, I.; Brandenburg, A. Production of a chiral magnetic field anomaly, with emerging turbulence and mean field dynamos. Phys. Rev. Lett.
**2022**, 128, 065002. [Google Scholar] [CrossRef] - Drummond, I.T.; Hathrell, S.J. QED vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D
**1980**, 22, 343. [Google Scholar] [CrossRef] [Green Version] - Seketh, M.V.S.; Kothari, R.; Jain, P. Torsion driven magnetogenesis at inflationary universe. Phys. Rev. D
**2020**, 102, 024008. [Google Scholar] - Arnold, V.; Khesin, B. Topological Methods in Hydrodynamics; Springer: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Childress, S.; Gilbert, A.D. Stretch, Twist and Fold: The Fast Dynamo; Springer: New York, NY, USA; London, UK, 1996. [Google Scholar]
- Garcia de Andrade, L. Addendum to: Dynamical Torsion Suppression in Brans-Dicke Inflation and Lorentz Violation: Einstein-Cartan-Brans-Dicke-Maxwell Universe with a Chiral Dynamo? Eur. Phys. J. C
**2022**, 82, 695. [Google Scholar] [CrossRef] - Mavromatos, N.E. Torsion in string-inspired cosmologies in the universe dark sector. arXiv
**2021**, arXiv:2111.07642. [Google Scholar] [CrossRef] - Capozziello, S.; Carleo, A.; Lambiase, G. The amplification of cosmological magnetic fields in external f (T, B) Teleparallel Gravity. arXiv
**2022**, arXiv:2208.11186. [Google Scholar] - Mazzitelli, F.D.; Spedalieri, F.M. Scalar Electrodynamics and Primordial Magnetic Fields. Phys. Rev. D
**1995**, 52, 6694. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Turner, M.S.; Widrow, L.M. Inflation-produced, large-scale magnetic fields. Phys. Rev. D
**1988**, 37, 2743. [Google Scholar] [CrossRef] - Tsagas, C.G. Resonant amplication of magnetic seed fields by gravitational waves in the early universe. Phys. Rev. D
**2005**, 72, 123509. [Google Scholar] [CrossRef] [Green Version] - Kranas, D.; Tsagas, C.G.; Barrow, J.D.; Iosifidis, D. Friedmann-like universes with torsion. Eur. Phys. J. C
**2019**, 79, 341. [Google Scholar] [CrossRef] - Dolan, B.P. Chiral Germions in the Early Universe. Cl. Quantum Gravity
**2010**, 27, 249801. [Google Scholar] [CrossRef] [Green Version] - Garcia de Andrade, L. Galactic dynamo Seeds and black holes singularities driven by Einstein-Cartan QCD walls. Ann. Phys.
**2022**, 440, 168816. [Google Scholar] [CrossRef] - Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S. Evolution of thick domain walls in inflationary and p=ωρ universe. Eur. Phys. J. C
**2018**, 78, 855. [Google Scholar] [CrossRef] - Belayev, I.; Shapiro, I.; Vale, M.B. Quantum Gravity in Einstein-Cartan theory. Phys. Rev. D
**2007**, 7645, 0345014. [Google Scholar] - Garcia de Andrade, L. Can Magnetogenesis driven by chiral dynamo instabilities, favor Einstein-Cartan cosmology? Ann. Phys.
**2021**, 433, 24. [Google Scholar] - Imaki, S.; Qiu, Z. Chiral torsional effect with finite temperature, density, and curvature. Phys. Rev. D
**2020**, 102, 016001. [Google Scholar] [CrossRef] - Adelberger, E.; Dvali, G.; Gruzinov, A. Photon mass destroyed by vortices. Phys. Rev. Lett.
**2007**, 98, 010402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Campanelli, L.; Cea, P.; Fogli, G.L. Lorentz symmetry violation and galactic magnetism. Phys. Lett. B
**2009**, 675, 155–158. [Google Scholar] [CrossRef] [Green Version] - Salim, J.; Souza, N.; Bergliaffa, S.P.; Prokopec, T. Creation of cosmological magnetic fields in a bouncing cosmology. J. Cosmol. Astropart. Phys.
**2007**, 2007, 011. [Google Scholar] [CrossRef] - Neville, D. Spin-2 propagating torsion. Phys. Rev. D
**1981**, 23, 1244–1249. [Google Scholar] [CrossRef] - Pandey, L.; Sethi, S.K. Probing Primordial Magnetic Fields Using Lyα Clouds. Astrophys. J.
**2013**, 762, 15. [Google Scholar] [CrossRef] [Green Version] - Banerjee, R. Private Communication, at Numerical Modeling of Space Plasma Ows; Astronum: Biaritz, France, 2013. [Google Scholar]
- Gasperini, M. Repulsive gravity in the very early Universe. GRG J.
**1998**, 30, 1703–1709. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Garcia de Andrade, L.C.
Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity. *Universe* **2022**, *8*, 658.
https://doi.org/10.3390/universe8120658

**AMA Style**

Garcia de Andrade LC.
Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity. *Universe*. 2022; 8(12):658.
https://doi.org/10.3390/universe8120658

**Chicago/Turabian Style**

Garcia de Andrade, L. C.
2022. "Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity" *Universe* 8, no. 12: 658.
https://doi.org/10.3390/universe8120658