Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity
Abstract
:1. Introduction
2. QED Effective Lagrangean and Semi-Minimal Torsion–Photon Coupling
3. Galactic Dynamo Seeds in Semi-Minimal Coupling
4. Torsion Chirality QED Magnetogenesis
5. Scalar Gravity–Torsion Sector in Static DW
6. Decay of Chiral Magnetic Field Seeds in Scalar Higgs-like Sector Einstein–Cartan Static DWs
7. Conclusions and Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaposhnikov, M.; Shkerin, A.; Timiryasov, I.; Zell, S. Einstein-Cartan Portal to Dark Matter. Phys. Rev. Lett. 2021, 126, 161301. [Google Scholar] [CrossRef] [PubMed]
- de Sabbata, V.; Sivaram, C. Spin and Torsion Gravitation; World Scientific: Singapore; New York, NY, USA, 1994. [Google Scholar]
- Garcia de Andrade, L. Einstein-Cartan-Holst gravity, chiral dynamos and GWs. Can. J. Phys. 2023, in press. [Google Scholar]
- Karananas, G.K.; Shaposhnikov, M.; Timiryasov, I.; Zell, S. Scale and Weyl Invariance in Einstein-Cartan Gravity. Phys. Rev. Lett. 2021, arXiv:2108.05897v2. [Google Scholar] [CrossRef]
- Bassett, B.A.; Polifrone, G.; Tsujikawa, S.; Viniegra, F. Preheating; magnetic cosmic dynamo. Phys. Rev. D 2001, 63, 023506. [Google Scholar] [CrossRef]
- Garcia de Andrade, L. Topology in Einstein-Cartan Magnetogenesis and Dynamo Effects; Lambert Academic Publishers: Chisinau, Moldavia, 2021. [Google Scholar]
- Garcia de Andrade, L.C. Chiral and non-chiral spinning string dynamo instability from quantum torsion sources. Ann. Phys. 2022, 436, 168666. [Google Scholar]
- Shukurov, A. Astrophysical Magnetic Fields-From Galaxies to the Early Universe; Cambridge Astrophysics Monographs: Cambridge, UK, 2022; Volume 56. [Google Scholar]
- Schober, J.; Rogachevskii, I.; Brandenburg, A. Dynamo instabilities in plasmas with inhomogemeous chiral chemical potential. Phys. Rev. D 2022, 105, 043507. [Google Scholar] [CrossRef]
- Schober, J.; Rogachevskii, I.; Brandenburg, A. Production of a chiral magnetic field anomaly, with emerging turbulence and mean field dynamos. Phys. Rev. Lett. 2022, 128, 065002. [Google Scholar] [CrossRef]
- Drummond, I.T.; Hathrell, S.J. QED vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D 1980, 22, 343. [Google Scholar] [CrossRef] [Green Version]
- Seketh, M.V.S.; Kothari, R.; Jain, P. Torsion driven magnetogenesis at inflationary universe. Phys. Rev. D 2020, 102, 024008. [Google Scholar]
- Arnold, V.; Khesin, B. Topological Methods in Hydrodynamics; Springer: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Childress, S.; Gilbert, A.D. Stretch, Twist and Fold: The Fast Dynamo; Springer: New York, NY, USA; London, UK, 1996. [Google Scholar]
- Garcia de Andrade, L. Addendum to: Dynamical Torsion Suppression in Brans-Dicke Inflation and Lorentz Violation: Einstein-Cartan-Brans-Dicke-Maxwell Universe with a Chiral Dynamo? Eur. Phys. J. C 2022, 82, 695. [Google Scholar] [CrossRef]
- Mavromatos, N.E. Torsion in string-inspired cosmologies in the universe dark sector. arXiv 2021, arXiv:2111.07642. [Google Scholar] [CrossRef]
- Capozziello, S.; Carleo, A.; Lambiase, G. The amplification of cosmological magnetic fields in external f (T, B) Teleparallel Gravity. arXiv 2022, arXiv:2208.11186. [Google Scholar]
- Mazzitelli, F.D.; Spedalieri, F.M. Scalar Electrodynamics and Primordial Magnetic Fields. Phys. Rev. D 1995, 52, 6694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.S.; Widrow, L.M. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 1988, 37, 2743. [Google Scholar] [CrossRef]
- Tsagas, C.G. Resonant amplication of magnetic seed fields by gravitational waves in the early universe. Phys. Rev. D 2005, 72, 123509. [Google Scholar] [CrossRef] [Green Version]
- Kranas, D.; Tsagas, C.G.; Barrow, J.D.; Iosifidis, D. Friedmann-like universes with torsion. Eur. Phys. J. C 2019, 79, 341. [Google Scholar] [CrossRef]
- Dolan, B.P. Chiral Germions in the Early Universe. Cl. Quantum Gravity 2010, 27, 249801. [Google Scholar] [CrossRef] [Green Version]
- Garcia de Andrade, L. Galactic dynamo Seeds and black holes singularities driven by Einstein-Cartan QCD walls. Ann. Phys. 2022, 440, 168816. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S. Evolution of thick domain walls in inflationary and p=ωρ universe. Eur. Phys. J. C 2018, 78, 855. [Google Scholar] [CrossRef]
- Belayev, I.; Shapiro, I.; Vale, M.B. Quantum Gravity in Einstein-Cartan theory. Phys. Rev. D 2007, 7645, 0345014. [Google Scholar]
- Garcia de Andrade, L. Can Magnetogenesis driven by chiral dynamo instabilities, favor Einstein-Cartan cosmology? Ann. Phys. 2021, 433, 24. [Google Scholar]
- Imaki, S.; Qiu, Z. Chiral torsional effect with finite temperature, density, and curvature. Phys. Rev. D 2020, 102, 016001. [Google Scholar] [CrossRef]
- Adelberger, E.; Dvali, G.; Gruzinov, A. Photon mass destroyed by vortices. Phys. Rev. Lett. 2007, 98, 010402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanelli, L.; Cea, P.; Fogli, G.L. Lorentz symmetry violation and galactic magnetism. Phys. Lett. B 2009, 675, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Salim, J.; Souza, N.; Bergliaffa, S.P.; Prokopec, T. Creation of cosmological magnetic fields in a bouncing cosmology. J. Cosmol. Astropart. Phys. 2007, 2007, 011. [Google Scholar] [CrossRef]
- Neville, D. Spin-2 propagating torsion. Phys. Rev. D 1981, 23, 1244–1249. [Google Scholar] [CrossRef]
- Pandey, L.; Sethi, S.K. Probing Primordial Magnetic Fields Using Lyα Clouds. Astrophys. J. 2013, 762, 15. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R. Private Communication, at Numerical Modeling of Space Plasma Ows; Astronum: Biaritz, France, 2013. [Google Scholar]
- Gasperini, M. Repulsive gravity in the very early Universe. GRG J. 1998, 30, 1703–1709. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia de Andrade, L.C. Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity. Universe 2022, 8, 658. https://doi.org/10.3390/universe8120658
Garcia de Andrade LC. Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity. Universe. 2022; 8(12):658. https://doi.org/10.3390/universe8120658
Chicago/Turabian StyleGarcia de Andrade, L. C. 2022. "Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity" Universe 8, no. 12: 658. https://doi.org/10.3390/universe8120658
APA StyleGarcia de Andrade, L. C. (2022). Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity. Universe, 8(12), 658. https://doi.org/10.3390/universe8120658