Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque
Abstract
:1. Introduction
2. Spin Evolution Model Furthermore, Results
Analytic Solution of the Pulsar Spin Evolution
3. Magnetic Field and Braking Index
3.1. Growth of Characteristic Magnetic Field
3.2. Decay of Braking Index
3.3. Evolution of Characteristic Age
4. Discussion and Conclusion
4.1. Measurement of Braking Index
4.2. Limitations and Assumptions of MDRW Model
4.3. Theoretical Interpretation and Observation Evidence
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Basic Information for MDR and Wind Component
Appendix B. Characteristic B-Field, Braking Index, and Characteristic Age
Appendix C. Parameter List for the Crab Pulsar and MDRW Model
Parameter | Value | Ref. |
---|---|---|
I (g cm2) | ∼ | [20,63,104,105] |
R (km) | ∼10 | [20,106] |
∼1–1.4 | [106,107,108,109,110] | |
P (ms) | 33.4 | ATNF |
(s s−1) | ATNF | |
(rad s−1) | 188.2 | ATNF |
(rad s−2) | ATNF | |
(G) | ATNF | |
(yr) | 1260 | ATNF |
(erg s−1) | ATNF | |
(erg s−1) | [54] |
Appendix D. Derivation of MDRW Model
Appendix E. More Explanation on MDRW Model
References
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Pacini, F. Rotating Neutron Stars, Pulsars and Supernova Remnants. Nature 1968, 219, 145–146. [Google Scholar] [CrossRef] [Green Version]
- Gold, T. Rotating Neutron Stars as the Origin of the Pulsating Radio Sources. Nature 1968, 218, 731–732. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005, 129, 1993–2006. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Qian, L.; Krco, M.; Jiang, P.; Yue, Y.; Jin, C.; Zhu, Y.; Pan, Z.; Nan, R.; et al. FAST in Space: Considerations for a Multibeam, Multipurpose Survey Using China’s 500-m Aperture Spherical Radio Telescope (FAST). IEEE Microw. Mag. 2018, 19, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Han, J.L.; Wang, C.; Wang, P.F.; Wang, T.; Zhou, D.J.; Sun, J.H.; Yan, Y.; Su, W.Q.; Jing, W.C.; Chen, X.; et al. The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries. Res. Astron. Astrophys. 2021, 21, 107. [Google Scholar] [CrossRef]
- Wang, P.; Li, D.; Clark, C.J.; Saz Parkinson, P.M.; Hou, X.; Zhu, W.; Qian, L.; Yue, Y.; Pan, Z.; Liu, Z.; et al. FAST discovery of an extremely radio-faint millisecond pulsar from the Fermi-LAT unassociated source 3FGL J0318.1+0252. Sci. China Phys. Mech. Astron. 2021, 64, 129562. [Google Scholar] [CrossRef]
- Miao, C.C.; Zhu, W.W.; Li, D.; Freire, P.C.C.; Niu, J.R.; Wang, P.; Yuan, J.P.; Xue, M.Y.; Cameron, A.D.; Champion, D.J.; et al. Arecibo and FAST Timing Follow-up of twelve Millisecond Pulsars Discovered in Commensal Radio Astronomy FAST Survey. Mon. Not. R. Astron. Soc. 2022, 518, 1672–1682. [Google Scholar] [CrossRef]
- Lorimer, D.; Pol, N.; Rajwade, K.; Aggarwal, K.; Agarwal, D.; Strader, J.; Lewandowska, N.; Kaplan, D.; Cohen, T.; Demorest, P.; et al. Radio Pulsar Populations. Bull. Am. Astron. Soc. 2019, 51, 261. [Google Scholar]
- Philippov, A.; Kramer, M. Pulsar Magnetospheres and Their Radiation. Annu. Rev. Astron. Astrophys. 2022, 60, 495–558. [Google Scholar] [CrossRef]
- Lovelace, R.V.E.; Sutton, J.M.; Craft, H.D. Pulsar NP 0532 Near Crab Nebula. Int. Astron. Union Circ. 1968, 2113, 1. [Google Scholar]
- Staelin, D.H.; Reifenstein, E.C., III. Pulsating Radio Sources near the Crab Nebula. Science 1968, 162, 1481–1483. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, R.V.E.; Tyler, G.L. On the discovery of the period of the Crab Nebular pulsar. The Observatory 2012, 132, 186–188. [Google Scholar]
- Alsabti, A.W.; Murdin, P. Handbook of Supernovae; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Manchester, R.N.; Taylor, J.H. Pulsars; W. H. Freeman: New York, NY, USA, 1977. [Google Scholar]
- Lyne, A.; Graham-Smith, F. Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lyne, A.G.; Pritchard, R.S.; Graham Smith, F. 23 years of Crab pulsar rotational history. Mon. Not. R. Astron. Soc. 1993, 265, 1003–1012. [Google Scholar] [CrossRef] [Green Version]
- Lyne, A.G.; Jordan, C.A.; Graham-Smith, F.; Espinoza, C.M.; Stappers, B.W.; Weltevrede, P. 45 years of rotation of the Crab pulsar. Mon. Not. R. Astron. Soc. 2015, 446, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Gunn, J.E.; Ostriker, J.P. Magnetic Dipole Radiation from Pulsars. Nature 1969, 221, 454–456. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Truemper, J.; Pietsch, W.; Reppin, C.; Voges, W.; Staubert, R.; Kendziorra, E. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. Astrophys. J. Lett. 1978, 219, L105–L110. [Google Scholar] [CrossRef]
- Bhattacharya, D.; van den Heuvel, E.P.J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 1991, 203, 1–124. [Google Scholar] [CrossRef]
- Narayan, R.; Ostriker, J.P. Pulsar Populations and Their Evolution. Astrophys. J. 1990, 352, 222. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Bailes, M.; Harrison, P.A. Pulsar statistics - IV. Pulsar velocities. Mon. Not. R. Astron. Soc. 1997, 289, 592–604. [Google Scholar] [CrossRef] [Green Version]
- Geppert, U.; Rheinhardt, M. Non-linear magnetic field decay in neutron stars. Theory and observations. Astron. Astrophys. 2002, 392, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Faucher-Giguère, C.A.; Kaspi, V.M. Birth and Evolution of Isolated Radio Pulsars. Astrophys. J. 2006, 643, 332–355. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Popov, S.B.; Hollerbach, R. Evolution of Neutron Star Magnetic Fields. Universe 2021, 7, 351. [Google Scholar] [CrossRef]
- Manchester, R.N.; Durdin, J.M.; Newton, L.M. A second measurement of a pulsar braking index. Nature 1985, 313, 374–376. [Google Scholar] [CrossRef]
- Blandford, R.D.; Romani, R.W. On the interpretation of pulsar braking indices. Mon. Not. R. Astron. Soc. 1988, 234, 57P–60P. [Google Scholar] [CrossRef] [Green Version]
- Boynton, P.E.; Groth, E.J.; Hutchinson, D.P.; Nanos, G.P.J.; Partridge, R.B.; Wilkinson, D.T. Optical Timing of the Crab Pulsar, NP 0532. Astrophys. J. 1972, 175, 217. [Google Scholar] [CrossRef] [Green Version]
- Groth, E.J. Timing of the Crab Pulsar III. The Slowing Down and the Nature of the Random Process. Astrophys. J. Suppl. Ser. 1975, 29, 453–465. [Google Scholar] [CrossRef]
- Lyne, A.G. From Crab Pulsar to Magnetar? In Young Neutron Stars and Their Environments; Camilo, F., Gaensler, B.M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2004; Volume 218, p. 257. [Google Scholar]
- Tong, H. Pulsar braking: Magnetodipole vs. wind. Sci. China Phys. Mech. Astron. 2016, 59, 5752. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.P.; Horvath, J.E. Implications of a Constant Observed Braking Index for Young Pulsars’ Spin-down. Astrophys. J. 1997, 488, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G.; Andersson, N. Rotational evolution of young pulsars due to superfluid decoupling. Nature Phys. 2012, 8, 787–789. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Applegate, J.H.; Hernquist, L. Thermal origin of neutron star magnetic fields. Mon. Not. R. Astron. Soc. 1983, 204, 1025–1048. [Google Scholar] [CrossRef] [Green Version]
- Beskin, V.S.; Gurevich, A.V.; Istomin, I.N. Spin-Down of Pulsars by the Current—Comparison of Theory with Observations. Astrophys. Space Sci. 1984, 102, 301–326. [Google Scholar] [CrossRef]
- Tauris, T.M.; Konar, S. Torque decay in the pulsar (P,dot {P}) diagram. Effects of crustal ohmic dissipation and alignment. Astron. Astrophys. 2001, 376, 543–552. [Google Scholar] [CrossRef]
- Lyne, A.; Graham-Smith, F.; Weltevrede, P.; Jordan, C.; Stappers, B.; Bassa, C.; Kramer, M. Evolution of the Magnetic Field Structure of the Crab Pulsar. Science 2013, 342, 598–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourgouliatos, K.N.; Cumming, A. Hall drift and the braking indices of young pulsars. Mon. Not. R. Astron. Soc. 2015, 446, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.; Karastergiou, A. Pulsar braking and the P-dot{P} diagram. Mon. Not. R. Astron. Soc. 2017, 467, 3493–3499. [Google Scholar] [CrossRef] [Green Version]
- Hamil, O.; Stone, N.J.; Stone, J.R. Braking index of isolated pulsars. II. A novel two-dipole model of pulsar magnetism. Phys. Rev. D 2016, 94, 063012. [Google Scholar] [CrossRef] [Green Version]
- Melatos, A. Spin-down of an oblique rotator with a current-starved outer magnetosphere. Mon. Not. R. Astron. Soc. 1997, 288, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- Contopoulos, I.; Spitkovsky, A. Revised Pulsar Spin-down. Astrophys. J. 2006, 643, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Spitkovsky, A. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators. Astrophys. J. Lett. 2006, 648, L51–L54. [Google Scholar] [CrossRef] [Green Version]
- Ekşi, K.Y.; Andaç, I.C.; Çıkıntoğlu, S.; Gügercinoğlu, E.; Vahdat Motlagh, A.; Kızıltan, B. The Inclination Angle and Evolution of the Braking Index of Pulsars with Plasma-filled Magnetosphere: Application to the High Braking Index of PSR J1640-4631. Astrophys. J. 2016, 823, 34. [Google Scholar] [CrossRef] [Green Version]
- Goldreich, P.; Julian, W.H. Pulsar Electrodynamics. Astrophys. J. 1969, 157, 869. [Google Scholar] [CrossRef]
- Michel, F.C. Relativistic Stellar-Wind Torques. Astrophys. J. 1969, 158, 727. [Google Scholar] [CrossRef]
- Michel, F.C.; Tucker, W.H. Pulsar Emission Mechanism. Nature 1969, 223, 277–279. [Google Scholar] [CrossRef] [Green Version]
- Ruderman, M.A.; Sutherland, P.G. Theory of pulsars: Polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 1975, 196, 51–72. [Google Scholar] [CrossRef]
- van den Heuvel, E.P.J. Pulsar Magnetospheres and Pulsar Death. Science 2006, 312, 539–540. [Google Scholar] [CrossRef] [Green Version]
- Gaensler, B.M.; Frail, D.A. A large age for the pulsar B1757-24 from an upper limit on its proper motion. Nature 2000, 406, 158–160. [Google Scholar] [CrossRef] [Green Version]
- Gaensler, B.M.; Slane, P.O. The Evolution and Structure of Pulsar Wind Nebulae. Annu. Rev. Astron. Astrophys. 2006, 44, 17–47. [Google Scholar] [CrossRef] [Green Version]
- Hester, J.J. The Crab Nebula: An astrophysical chimera. Annu. Rev. Astron. Astrophys. 2008, 46, 127–155. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Lyne, A.G.; O’Brien, J.T.; Jordan, C.A.; Lorimer, D.R. A Periodically Active Pulsar Giving Insight into Magnetospheric Physics. Science 2006, 312, 549–551. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, M.A.; Lyne, A.G.; Lorimer, D.R.; Kramer, M.; Faulkner, A.J.; Manchester, R.N.; Cordes, J.M.; Camilo, F.; Possenti, A.; Stairs, I.H.; et al. Transient radio bursts from rotating neutron stars. Nature 2006, 439, 817–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, A.K.; Contopoulos, I.; Kazanas, D. Magnetar Spin-Down. Astrophys. J. Lett. 1999, 525, L125–L128. [Google Scholar] [CrossRef]
- Alvarez, C.; Carramiñana, A. Monopolar pulsar spin-down. Astron. Astrophys. 2004, 414, 651–658. [Google Scholar] [CrossRef]
- Xu, R.X.; Qiao, G.J. Pulsar Braking Index: A Test of Emission Models? Astrophys. J. Lett. 2001, 561, L85–L88. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C.; Li, X.D. Why the braking indices of young pulsars are less than 3? Astron. Astrophys. 2006, 450, L1–L4. [Google Scholar] [CrossRef]
- Kou, F.F.; Tong, H. Rotational evolution of the Crab pulsar in the wind braking model. Mon. Not. R. Astron. Soc. 2015, 450, 1990–1998. [Google Scholar] [CrossRef] [Green Version]
- Pétri, J. The illusion of neutron star magnetic field estimates. Mon. Not. R. Astron. Soc. 2019, 485, 4573–4587. [Google Scholar] [CrossRef]
- Glendenning, N. Compact Stars. Nuclear Physics, Particle Physics and General Relativity; Springer: New York, NY, USA, 1996. [Google Scholar]
- Weber, E.J.; Davis, L., Jr. The Angular Momentum of the Solar Wind. Astrophys. J. 1967, 148, 217–227. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, J.; Baring, M.G.; Bastieri, D.; et al. Fermi Large Area Telescope Observations of the Crab Pulsar And Nebula. Astrophys. J. 2010, 708, 1254–1267. [Google Scholar] [CrossRef] [Green Version]
- Lorimer, D.R. Binary and Millisecond Pulsars. Living Rev. Relativ. 2008, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinoza, C.M.; Lyne, A.G.; Kramer, M.; Manchester, R.N.; Kaspi, V.M. The Braking Index of PSR J1734-3333 and the Magnetar Population. Astrophys. J. Lett. 2011, 741, L13. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.C.; Thompson, C. Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. Astrophys. J. Lett. 1992, 392, L9. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. Neutron Star Dynamos and the Origins of Pulsar Magnetism. Astrophys. J. 1993, 408, 194. [Google Scholar] [CrossRef]
- Ferrario, L.; Wickramasinghe, D. Origin and evolution of magnetars. Mon. Not. R. Astron. Soc. 2008, 389, L66–L70. [Google Scholar] [CrossRef] [Green Version]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef] [Green Version]
- Esposito, P.; Rea, N.; Israel, G.L. Magnetars: A Short Review and Some Sparse Considerations. In Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2021; Volume 461, pp. 97–142. [Google Scholar] [CrossRef]
- Phinney, E.S.; Kulkarni, S.R. Binary and Millisecond Pulsars. Annu. Rev. Astron. Astrophys. 1994, 32, 591–639. [Google Scholar] [CrossRef]
- Zhang, C.M.; Kojima, Y. The bottom magnetic field and magnetosphere evolution of neutron star in low-mass X-ray binary. Mon. Not. R. Astron. Soc. 2006, 366, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, C.M.; Lyne, A.G.; Stappers, B.W. New long-term braking index measurements for glitching pulsars using a glitch-template method. Mon. Not. R. Astron. Soc. 2017, 466, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Camilo, F.; Thorsett, S.E.; Kulkarni, S.R. The Magnetic Fields, Ages, and Original Spin Periods of Millisecond Pulsars. Astrophys. J. Lett. 1994, 421, L15. [Google Scholar] [CrossRef]
- Lyne, A.G.; Pritchard, R.S.; Graham-Smith, F.; Camilo, F. Very low braking index for the Vela pulsar. Nature 1996, 381, 497–498. [Google Scholar] [CrossRef]
- Cui, X.H.; Zhang, C.M.; Li, D.; Zhang, J.W.; Peng, B.; Zhu, W.W.; Wu, Q.D.; Wang, S.Q.; Wang, N.; Wang, D.H.; et al. Statistical tests of young radio pulsars with/without supernova remnants: Implying two origins of neutron stars. Mon. Not. R. Astron. Soc. 2021, 508, 279–286. [Google Scholar] [CrossRef]
- Chukwude, A.E.; Baiden, A.A.; Onuchukwu, C.C. Measurements of radio pulsar braking indices. Astron. Astrophys. 2010, 515, A21. [Google Scholar] [CrossRef]
- Zhang, S.N.; Xie, Y. Why Do the Braking Indices of Pulsars Span a Range of More Than 100 Millions? Astrophys. J. 2012, 761, 102. [Google Scholar] [CrossRef]
- Cordes, J.M.; Helfand, D.J. Pulsar Timing. III. Timing noise of 50 pulsars. Astrophys. J. 1980, 239, 640–650. [Google Scholar] [CrossRef]
- Archibald, R.F.; Gotthelf, E.V.; Ferdman, R.D.; Kaspi, V.M.; Guillot, S.; Harrison, F.A.; Keane, E.F.; Pivovaroff, M.J.; Stern, D.; Tendulkar, S.P.; et al. A High Braking Index for a Pulsar. Astrophys. J. Lett. 2016, 819, L16. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Ghaderpour, S. Least-squares Spectral and Wavelet Analyses of V455 Andromedae Time Series: The Life After the Super-outburst. Publ. Astron. Soc. Pac. 2020, 132, 114504. [Google Scholar] [CrossRef]
- Jiang, M.; Cui, B.Y.; Schmid, N.A.; McLaughlin, M.A.; Cao, Z.C. Wavelet Denoising of Radio Observations of Rotating Radio Transients (RRATs): Improved Timing Parameters for Eight RRATs. Astrophys. J. 2017, 847, 75. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.X.; Yang, T.G. Wavelet Analysis Algorithm for Synthetic Pulsar Time. Chin. Astron. Astrophys. 2007, 31, 443–454. [Google Scholar] [CrossRef]
- Gardner, J.P.; Mather, J.C.; Clampin, M.; Doyon, R.; Greenhouse, M.A.; Hammel, H.B.; Hutchings, J.B.; Jakobsen, P.; Lilly, S.J.; Long, K.S.; et al. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485–606. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, D.; de Sabbata, V.; Gualdi, C. Are there magnetic fields around a neutron star? Il Nuovo C. 1965, 36, 685–688. [Google Scholar] [CrossRef]
- Sabbata, V.; Gualdi, C. X-rays from Van Allen belts around a magnetic neutron star. Nuovo C. A Ser. 1965, 63, 151–156. [Google Scholar] [CrossRef]
- Pétri, J. Multipolar electromagnetic fields around neutron stars: Exact vacuum solutions and related properties. Mon. Not. R. Astron. Soc. 2015, 450, 714–742. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, M.A.; Kaspi, V.M.; Gavriil, F.P.; Manchester, R.N.; Gotthelf, E.V.G.; Kuiper, L. New phase-coherent measurements of pulsar braking indices. Astrophys. Space Sci. 2007, 308, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Weltevrede, P.; Johnston, S.; Espinoza, C.M. The glitch-induced identity changes of PSR J1119-6127. Mon. Not. R. Astron. Soc. 2011, 411, 1917–1934. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.; Gupta, Y.; Lewandowski, W. Observations of four glitches in the young pulsar J1833-1034 and study of its glitch activity. Mon. Not. R. Astron. Soc. 2012, 424, 2213–2221. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.J.; Pletsch, H.J.; Wu, J.; Guillemot, L.; Camilo, F.; Johnson, T.J.; Kerr, M.; Allen, B.; Aulbert, C.; Beer, C.; et al. The Braking Index of a Radio-quiet Gamma-Ray Pulsar. Astrophys. J. Lett. 2016, 832, L15. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, C.M.; Vidal-Navarro, M.; Ho, W.C.G.; Deller, A.; Chatterjee, S. VLA proper motion constraints on the origin, age, and potential magnetar future of PSR J1734-3333. Astron. Astrophys. 2022, 659, A41. [Google Scholar] [CrossRef]
- Johnston, S.; Lower, M.E. A supernova remnant association for the fast-moving pulsar PSR J0908-4913. Mon. Not. R. Astron. Soc. 2021, 507, L41–L45. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Gunn, J.E. On the Nature of Pulsars. I. Theory. Astrophys. J. 1969, 157, 1395. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Meszaros, P. High-Energy Radiation from Magnetized Neutron Stars; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Camenzind, M. Compact Objects in Astrophysics: White Dwarfs, Neutron Stars, and Black Holes; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P. Rotation and Accretion Powered Pulsars; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2007; Volume 10. [Google Scholar] [CrossRef]
- Becker, W. Neutron Stars and Pulsars. Astrophys. Space Sci. Libr. 2009, 357, 41. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.Q.; Wang, D.H.; Zhang, C.M.; Diao, Z.Q. Evolution implications of neutron star magnetic fields: Inferred from pulsars and cyclotron lines of HMXBs. Astrophys. Space Sci. 2019, 364, 198. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.; Galloway, D. Pulsar braking indices revisited. Mon. Not. R. Astron. Soc. 1999, 306, L50–L54. [Google Scholar] [CrossRef] [Green Version]
- Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lattimer, J.M.; Prakash, M. The Physics of Neutron Stars. Science 2004, 304, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Becker, W.; Aschenbach, B. ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature Upper Limit for PSR 0531+21. In Proceedings of the The Lives of the Neutron Stars; Alpar, M.A., Kiziloglu, U., van Paradijs, J., Eds.; NATO Advanced Study Institute (ASI) Series C. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Volume 450, p. 47. [Google Scholar]
- Scott, D.M.; Finger, M.H.; Wilson, C.A. Characterization of the timing noise of the Crab pulsar. Mon. Not. R. Astron. Soc. 2003, 344, 412–430. [Google Scholar] [CrossRef] [Green Version]
- Janka, H.T. Neutron Star Formation and Birth Properties. In Young Neutron Stars and Their Environments; Camilo, F., Gaensler, B.M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2004; Volume 218, p. 3. [Google Scholar]
- Miller, M.C.; Miller, J.M. The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 2015, 548, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C. Astrophysical Constraints on Dense Matter in Neutron Stars. In Timing Neutron Stars: Pulsations, Oscillations and Explosions; Belloni, T.M., Méndez, M., Zhang, C., Eds.; Astrophysics and Space Science Library Book Series; Springer: Berlin/Heidelberg, Germany, 2021; Volume 461, pp. 1–51. [Google Scholar] [CrossRef]
- Kirk, J.G.; Lyubarsky, Y.; Petri, J. The Theory of Pulsar Winds and Nebulae. In Neutron Stars and Pulsars; Becker, W., Ed.; Astrophysics and Space Science Library Book Series; Springer: Berlin/Heidelberg, Germany, 2009; Volume 357, p. 421. [Google Scholar] [CrossRef] [Green Version]
- Shibata, S. Magnetosphere of the Rotation-powered Pulsar: A DC Circuit Model. Astrophys. J. 1991, 378, 239. [Google Scholar] [CrossRef]
- Cheng, K.S. High Energy Emission from Pulsars and Pulsar Wind Nebulae. In Neutron Stars and Pulsars; Becker, W., Ed.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2009; Volume 357, p. 481. [Google Scholar] [CrossRef]
- Li, J.; Spitkovsky, A.; Tchekhovskoy, A. On the Spin-down of Intermittent Pulsars. Astrophys. J. Lett. 2012, 746, L24. [Google Scholar] [CrossRef] [Green Version]
- Pétri, J. Theory of pulsar magnetosphere and wind. J. Plasma Phys. 2016, 82, 635820502. [Google Scholar] [CrossRef]
- Melrose, D.B.; Yuen, R. Pulsar electrodynamics: An unsolved problem. J. Plasma Phys. 2016, 82, 635820202. [Google Scholar] [CrossRef] [Green Version]
- Krolik, J.H. Multipolar Magnetic Fields in Neutron Stars. Astrophys. J. Lett. 1991, 373, L69. [Google Scholar] [CrossRef]
- Pétri, J. The pulsar force-free magnetosphere linked to its striped wind: Time-dependent pseudo-spectral simulations. Mon. Not. R. Astron. Soc. 2012, 424, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Pétri, J. Multipolar electromagnetic fields around neutron stars: General-relativistic vacuum solutions. Mon. Not. R. Astron. Soc. 2017, 472, 3304–3336. [Google Scholar] [CrossRef] [Green Version]
- Pétri, J. Electrodynamics and Radiation from Rotating Neutron Star Magnetospheres. Universe 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Pétri, J. Magnetic quadri-dipolar stars rotating in vacuum. Mon. Not. R. Astron. Soc. 2020, 499, 4445–4454. [Google Scholar] [CrossRef]
- Alpar, M.A.; Ankay, A.; Yazgan, E. Pulsar Spin-down by a Fallback Disk and the P-P Diagram. Astrophys. J. Lett. 2001, 557, L61–L65. [Google Scholar] [CrossRef]
- Popov, S.; Prokhorov, M. Progenitors with enhanced rotation and the origin of magnetars. Mon. Not. R. Astron. Soc. 2006, 367, 732–736. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S. Young Neutron Stars with Soft Gamma Ray Emission and Anomalous X-Ray Pulsars. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 1401. [Google Scholar] [CrossRef] [Green Version]
- Mereghetti, S.; Pons, J.A.; Melatos, A. Magnetars: Properties, Origin and Evolution. Space Sci. Rev. 2015, 191, 315–338. [Google Scholar] [CrossRef] [Green Version]
- CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Bij, A.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P.; et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.B.; Postnov, K.A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. In Evolution of Cosmic Objects through Their Physical Activity; Harutyunian, H.A., Mickaelian, A.M., Terzian, Y., Eds.; Publishing House of the National Academy of Sciences: Yerevan, Armenia, 2010; pp. 129–132. [Google Scholar]
- Cui, X.H.; Zhang, C.M.; Li, D.; Zhang, J.W.; Peng, B.; Zhu, W.W.; Strom, R.; Wang, S.Q.; Wang, N.; Wu, Q.D.; et al. Luminosity distribution of fast radio bursts from CHIME/FRB Catalog 1 by means of the updated Macquart relation. Astrophys. Space Sci. 2022, 367, 66. [Google Scholar] [CrossRef]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts at the dawn of the 2020s. Astron. Astrophys. Rev. 2022, 30, 2. [Google Scholar] [CrossRef]
- Kaspi, V.M. Grand unification of neutron stars. Proc. Natl. Acad. Sci. USA 2010, 107, 7147–7152. [Google Scholar] [CrossRef] [Green Version]
- Beskin, V.S. Radio pulsars: Already fifty years! Phys. Uspekhi 2018, 61, 353–380. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, C.; Li, D.; Yang, W.; Cui, X.; Ye, C.; Wang, D.; Yang, Y.; Bi, S.; Zhang, X. Revisit the magnetic field distribution of normal pulsars: Implications on the multiple origins for neutron stars. Publ. Astron. Soc. Pac. 2022, 134, 114201. [Google Scholar] [CrossRef]
Time (kyr) | (rad s−1) | (10−10 rad s−2) | P (ms) | (10−13 s s−1) | (1012 G) | (kyr) | n | f | ϵ |
---|---|---|---|---|---|---|---|---|---|
0 | 343.8 | 120.4 | 18.3 | 6.4 | 3.5 | 0.9 | 2.82 | 0.09 | 0.10 |
0.96 | 188.2 | 23.9 | 33.4 | 4.2 | 3.8 | 2.5 | 2.50 | 0.25 | 0.33 |
2.98 | 108.6 | 6.9 | 57.8 | 3.7 | 4.7 | 5.0 | 2.00 | 0.50 | 1.00 |
10 | 40.6 | 1.5 | 154.9 | 5.6 | 9.6 | 8.8 | 1.24 | 0.88 | 7.33 |
50 | 0.7 | 0.02 | 9126 | 290 | 334 | 9.967 | 0.9999 | 0.9999 | 10,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.-M.; Cui, X.-H.; Li, D.; Wang, D.-H.; Wang, S.-Q.; Wang, N.; Zhang, J.-W.; Peng, B.; Zhu, W.-W.; Yang, Y.-Y.; et al. Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque. Universe 2022, 8, 628. https://doi.org/10.3390/universe8120628
Zhang C-M, Cui X-H, Li D, Wang D-H, Wang S-Q, Wang N, Zhang J-W, Peng B, Zhu W-W, Yang Y-Y, et al. Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque. Universe. 2022; 8(12):628. https://doi.org/10.3390/universe8120628
Chicago/Turabian StyleZhang, Cheng-Min, Xiang-Han Cui, Di Li, De-Hua Wang, Shuang-Qiang Wang, Na Wang, Jian-Wei Zhang, Bo Peng, Wei-Wei Zhu, Yi-Yan Yang, and et al. 2022. "Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque" Universe 8, no. 12: 628. https://doi.org/10.3390/universe8120628
APA StyleZhang, C. -M., Cui, X. -H., Li, D., Wang, D. -H., Wang, S. -Q., Wang, N., Zhang, J. -W., Peng, B., Zhu, W. -W., Yang, Y. -Y., & Pan, Y. -Y. (2022). Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque. Universe, 8(12), 628. https://doi.org/10.3390/universe8120628