Impact of Lorentz Violation Models on Exoplanets’ Dynamics
Abstract
:1. Introduction
2. Definition of the Perturbing Acceleration
3. The Method of Radial Velocity
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | For an unperturbed Keplerian ellipse in the gravitational field of a body with mass M, it is . |
2 | Notice that all the following results hold for the binary’s relative orbit; the resulting shift for the stellar RV can be straightforwardly obtained by rescaling the final formula by the ratio of the planet’s mass to the sum of the masses of the parent star and of the planet itself. |
References
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355. [Google Scholar] [CrossRef]
- Perryman, M. The Exoplanet Handbook; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Deeg, H.J.; Belmonte, J.A. (Eds.) Handbook of Exoplanets; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Iorio, L. Post-Keplerian effects on radial velocity in binary systems and the possibility of measuring General Relativity with the star S2 in 2018. Mon. Not. R. Astron. Soc. 2017, 472, 2249–2262. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Was Einstein Right? A Centenary Assessment. In Proceedings of the General Relativity and Gravitation. A Centennial Perspective; Ashtekar, A., Berger, B.K., Isenberg, J., MacCallum, M., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 49–96. [Google Scholar]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to Modified Gravity and Gravitational Alternative for Dark Energy. Int. J. Geom. Methods Mod. Phys. 2007, 04, 115–145. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. The dark side of gravity: Modified theories of gravity. arXiv 2008, arXiv:0807.1640. [Google Scholar]
- Tsujikawa, S. Modified gravity models of dark energy. Lect. Notes Phys. 2010, 800, 99–145. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Harko, T.; Koivisto, T.; Lobo, F.; Olmo, G. Hybrid Metric-Palatini Gravity. Universe 2015, 1, 199–238. [Google Scholar] [CrossRef]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Said, J.L. Teleparallel Gravity: Foundations and Observational Constraints—Editorial. Universe 2021, 7, 269. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Tasson, J.D. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A. Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 2005, 71, 065008. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D 2002, 66, 056005. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760–6774. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Samuel, S. Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D 1989, 40, 1886–1903. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683–685. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Kostelecký, A.; Xu, R. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Havert, D. Velocity-dependent inverse cubic force and solar system gravity tests. Phys. Rev. D 2017, 96, 064035. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G. Lorentz-violating gravitoelectromagnetism. Phys. Rev. D 2010, 82, 065012. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, B.; Farinella, P.; Vokrouhlicky, D. Physics of the Solar System: Dynamics and Evolution, Space Physics, and Spacetime Structure; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 293. [Google Scholar]
- Casotto, S. Position and velocity perturbations in the orbital frame in terms of classical element perturbations. Celest. Mech. Dyn. Astron. 1993, 55, 209–221. [Google Scholar] [CrossRef]
- Iorio, L. Post-Keplerian perturbations of the orbital time shift in binary pulsars: An analytical formulation with applications to the Galactic Center. Eur. Phys. J. C 2017, 77, 439. [Google Scholar] [CrossRef]
- Hees, A.; Bailey, Q.; Bourgoin, A.; Pihan-Le Bars, H.; Guerlin, C.; Le Poncin-Lafitte, C. Tests of Lorentz Symmetry in the Gravitational Sector. Universe 2016, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Shao, L. Tests of Local Lorentz Invariance Violation of Gravity in the Standard Model Extension with Pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef] [Green Version]
- Fischer, D.A.; Anglada-Escude, G.; Arriagada, P.; Baluev, R.V.; Bean, J.L.; Bouchy, F.; Buchhave, L.A.; Carroll, T.; Chakraborty, A.; Crepp, J.R.; et al. State of the field: Extreme precision radial velocities. Publ. Astron. Soc. Pac. 2016, 128, 066001. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, C.; Ford, E.B.; Jones, D.E.; Stenning, D.C. Toward Extremely Precise Radial Velocities. II. A Tool for Using Multivariate Gaussian Processes to Model Stellar Activity. Astrophys. J. 2020, 905, 155. [Google Scholar] [CrossRef]
- Matsuo, T.; Greene, T.P.; Qezlou, M.; Bird, S.; Ichiki, K.; Fujii, Y.; Yamamuro, T. Densified Pupil Spectrograph as High-precision Radial Velocimetry: From Direct Measurement of the Universe’s Expansion History to Characterization of Nearby Habitable Planet Candidates. Astron. J. 2022, 163, 63. [Google Scholar] [CrossRef]
- Lam, K.W.; Csizmadia, S.; Astudillo-Defru, N.; Bonfils, X.; Gandolfi, D.; Padovan, S.; Esposito, M.; Hellier, C.; Hirano, T.; Livingston, J.; et al. GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star. Science 2021, 374, 1271–1275. [Google Scholar] [CrossRef]
- Shapiro, I.I. Solar system tests of general relativity: Recent results and present plans. In Proceedings of the General Relativity and Gravitation, Boulder, CO, USA, 2–8 July 1989; Ashby, N., Bartlett, D.F., Wyss, W., Eds.; Cambridge University Press: Cambridge UK, 1990; p. 313. [Google Scholar]
Planet | e | (m/s) | |
---|---|---|---|
SDSS 1604 + 1000 b | 0.04 | 1 0.1 0.01 | ∼ ∼ ∼ |
GJ 367 b | 0 | 1 0.1 0.01 | ∼ ∼ ∼ |
WASP-19 b | 0.0046 | 1 0.1 0.01 | ∼ ∼ ∼ |
Kepler-411 e | 0.016 | 1 0.1 0.01 | ∼ ∼ ∼ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallerati, A.; Ruggiero, M.L.; Iorio, L. Impact of Lorentz Violation Models on Exoplanets’ Dynamics. Universe 2022, 8, 608. https://doi.org/10.3390/universe8110608
Gallerati A, Ruggiero ML, Iorio L. Impact of Lorentz Violation Models on Exoplanets’ Dynamics. Universe. 2022; 8(11):608. https://doi.org/10.3390/universe8110608
Chicago/Turabian StyleGallerati, Antonio, Matteo Luca Ruggiero, and Lorenzo Iorio. 2022. "Impact of Lorentz Violation Models on Exoplanets’ Dynamics" Universe 8, no. 11: 608. https://doi.org/10.3390/universe8110608
APA StyleGallerati, A., Ruggiero, M. L., & Iorio, L. (2022). Impact of Lorentz Violation Models on Exoplanets’ Dynamics. Universe, 8(11), 608. https://doi.org/10.3390/universe8110608