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Abstract: Many exoplanets have been detected by the radial velocity method, according to which the
motion of a binary system around its center of mass can produce a periodical variation of the Doppler
effect of the light emitted by the host star. These variations are influenced by both Newtonian and
non-Newtonian perturbations to the dominant inverse-square acceleration; accordingly, exoplanetary
systems lend themselves to testing theories of gravity alternative to general relativity. In this paper,
we consider the impact of the Standard Model Extension (a model that can be used to test all
possible Lorentz violations) on the perturbation of radial velocity and suggest that suitable exoplanets’
configurations and improvements in detection techniques may contribute to obtaining new constraints
on the model parameters.

Keywords: gravitation; alternative gravity theories; standard model extension; extrasolar planets;
celestial mechanics; binaries; planetary systems

1. Introduction
After the first detection of a planet orbiting a main sequence star [1], thousands of

exoplanets have been detected using different techniques, such as radial velocity, transit
photometry and timing, pulsar timing, microlensing and astrometry; indeed, each of these
techniques is sensitive to the specific properties of the planetary systems, unavoidably
leading to selection effects in the detection process [2,3].

Radial velocity (RV) is a powerful tool that is used not only in the search for exoplanets
but, more generally, to discover an invisible celestial object gravitationally bound to another
one. The underlying idea is the following: by accurately observing the light spectrum of
the visible body, it is possible to detect periodical variations in the wavelength due to the
Doppler effect determined by the motion of the system around the center of mass. This is
the projection of the velocity vector onto the line of sight. Obviously, in an exoplanetary
system, the visible body is the host star, while the invisible one is the planet, but a similar
approach can be applied also to a binary system made of a main sequence star and a white
dwarf, a neutron star, or a black hole.

In a previous work [4], one of the authors introduced a comprehensive approach to
obtain the impact of post-Keplerian (pK) corrections to the dominant Newtonian inverse-
square acceleration on radial velocity; in particular, they can be of both Newtonian and
non-Newtonian origin, for instance, deriving from models of gravity alternative to general
relativity (GR). In fact, on the one hand, we know that more than 100 years after its
publication, GR remains the best model to describe gravitation interaction, as its predictions
were verified with great accuracy [5]. However, there are challenges coming from the
observation of the universe at very large scales [6], and in addition, there are known
problems when one tries to reconcile GR with the standard model of particle physics.
Consequently, it is expected that GR could represent a suitable limit of a more general
theory, which we still ignore. As a consequence, there are various and sound motivations
to try to extend Einstein’s theory; summaries of diverse modified gravity models can be
found in the review papers [7–17].
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In this context, the role of Lorentz symmetry is quite relevant; in fact, it represents
a fundamental property of the mathematical model of spacetime at the basis of GR. It is
useful to remember that the bounds of the violation of Lorentz invariance were obtained
from the binary neutron star (BNS) merger [18]. Nonetheless, it would be desirable to
obtain constraints from different systems, such as exoplanets.

Thus, the search for a more fundamental theory brings about a careful investigation of
possible Lorentz violations (LV). The Standard Model Extension (SME) is a framework that
can be used to experimentally test all possible Lorentz violations [19–28].

The purpose of this paper is to calculate the perturbation of the radial velocities within
the SME, in order to evaluate their impact on the current observation of exoplanets. More
specifically, we wish to explore the potential that such a method may have in constraining
the relevant LV-parameters in light of the current and expected accuracies in measuring
exoplanetary RVs. In particular, we calculate the instantaneous and orbit-averaged radial
velocity variations; in fact, the latter are very useful, since there are data records covering
many orbital revolutions for this kind of system.

The paper is organized as follows: we define the impact of the SME coefficients on
the system dynamics in Section 2, and we calculate, to the lowest order in eccentricity, the
perturbation of the radial velocity in Section 3; the discussion and conclusion are presented
in Section 4.

2. Definition of the Perturbing Acceleration
The SME is based on Riemann–Cartan spacetime; in particular (see, e.g., Bailey and

Kostelecký [21]), if we focus on the pure-gravity sector, the relevant equation of motion can
be derived from a Lagrangian in the form L = LLI + LLV, where LLI and LLV refer to the
Lorentz-inviariant and Lorentz-violating terms, respectively. In the limit of Riemannian
spacetime, the pure-gravity sector Lagrangian turns out to be the usual Einstein–Hilbert
action LLI =

√−g(R− 2Λ)/16πG, where G is the Newtonian constant of gravitation, R is
the Ricci scalar, g is the metric determinant, and Λ is the cosmological constant. Then, the
Lorentz-violating Lagrangian turns out to be [21,23]:

LLV =

√−g
16πG

(
−u R + sµν RT

µν + tκλµνCκλµν

)
. (1)

Notice that it is possible to consider additional contributions in the action (1), deriving
from a nonminimal SME expansion (see, e.g., Kostelecký and Russell [19], Bailey et al. [29],
Kostelecký and Mewes [30], Bailey and Havert [31]). In the above expression, RT

µν is the
trace-free Ricci tensor, and Cκλµν is the Weyl conformal tensor. The u, sµν, and tκλµν objects
are Lorentz-violating fields; more precisely, they violate the particle local Lorentz invariance
and the diffeomorphism, while the observer local Lorentz invariance is maintained [23].
The post-Newtonian analysis of the SME equations for the pure-gravity sector, as discussed
by Bailey and Kostelecký [21], show that the relevant terms in the metric that describe the
leading observable effects are determined by the components of a trace-free matrix s̄µν,
which are the (rescaled) vacuum expectation values of sµν. It is relevant to point out that
while s̄µν is observer Lorentz-invariant, it turns out to be particle Lorentz-violating [23].
Accordingly, it is important to specify the observer reference system that we are using. To
begin with, we refer to the reference frame at rest with the binary system barycenter. In
this frame, according to Bailey and Kostelecký [21], Bailey [32], it is possible to write the
acceleration acting on a test particle in terms of the gravitoelectric field aGE = EG, where

Ej
G = −GM

r2

[
r̂j
(

1 +
3
2

s00 +
3
2

skl r̂k r̂l
)
− sjk r̂k

]
. (2)

In the above expression, M is the mass of the primary, r is the position vector with
respect to the primary, and r̂ is the unit vector, r̂ =

r
r

. Equation (2) can be written in the form

EG = EG,N + ∆E, (3)
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where EG,N is the Newtonian field, and ∆E is the perturbation, which can be written as

∆Ei = −GM
r2

(
3
2

s00 +
3
2

skl r̂k r̂l
)

r̂i +
GM
r2 sik r̂k. (4)

In order to evaluate the impact of the above acceleration on the motion of a planet,
which can be thought of as a test particle, let us start by suitably parameterizing its
unperturbated motion (in doing this, we follow the approach described in Ref. [21]). We
first define a reference frame, with its origin in the focus of the planet orbit; in this frame,
we consider a set of Cartesian coordinates {x, y, z}, where z is directed along the line of
sight toward the Earth. An arbitrary configuration of the test particle orbit is shown in
Figure 1; besides the already mentioned Cartesian coordinate system {x, y, z}, with unit
vectors ux, uy, and uz, we introduce another Cartesian coordinate system {X, Y, Z}, with
the same origin and unit vectors uX, uY, and uZ. The orbital plane is the XY plane, and
we denote with Ω the angle between the x axis and the line of the nodes, while the angle
between the z and Z axes is called i. The periastron is along the X axis, and we denote by ω
the argument of the periastron, i.e., the angle between the line of nodes and the X axis. The
following relations hold between the unit vectors of the two Cartesian coordinate systems
(see, e.g., Bertotti et al. [33]):

uX = (cos ω cos Ω− sin ω cos i sin Ω)ux + (cos ω sin Ω + sin ω cos i cos Ω)uy + sin ω sin i uz

uY = (− sin ω cos Ω− cos ω cos i sin Ω)ux + (− sin ω sin Ω + cos ω cos i cos Ω)uy + cos ω sin i uz

uZ = sin i sin Ω ux − sin i cos Ω uy + cos i uz. (5)

Figure 1. Unperturbed orbit of the test particle.

In what follows, for direct comparison with previous works (see, e.g., Bailey and
Kostelecký [21]), we use the following notation for the above vectors:

uX → P, uY → Q, uZ → N. (6)

Notice that P is directed from the focus (and origin of the coordinate system) to the
periastron; N is orthogonal to the orbital plane. The unit vectors P, Q, and N depend on
the orbital elements only. Let X denote the position vector of the test particle, which in the
orbital plane can be written as

X = r( f ) cos f P + r( f ) sin f Q, (7)

where the Keplerian ellipse, parameterized by the true anomaly f , is written as

r( f ) =
a
(
1− e2)

1 + e cos f
(8)
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in terms of the semi-major axis a and eccentricity e.
Along the orbit, we define the radial vector R

R = cos f P + sin f Q, (9)

and the transverse vector T
T = − sin f P + cos Q. (10)

The perturbing acceleration (4) must be evaluated along the orbit; so, r̂ = R. Ac-
cordingly, using the definitions (9), (10), the perturbing acceleration can be written in
the form

∆Ei = −GM
r2 α1 r̂i +

GM
r2 sik r̂k, (11)

where
α1 =

3
2

[
s00 + sPP cos2 f + sQQ sin2 f + 2 sPQ sin f cos f

]
, (12)

with
sPP = skl P̂k P̂l , sQQ = sklQ̂kQ̂l , sPQ = skl P̂kQ̂l . (13)

Notice that sPP, sQQ, and sPQ depend on the orbital elements only.
Now, we can calculate the radial, transverse, and normal components of the perturbing

acceleration (11). We obtain

Er = ∆E · R = −GM
r2

[
3
2

s00 +
1
2

(
sPP cos2 f + sQQ sin2 f + 2sPQ sin f cos f

)]
, (14)

Et = ∆E · T =
GM
r2

[
cos f sin f

(
sQQ − sPP

)
+
(

cos2 f − sin2 f
)

sPQ
]
, (15)

En = ∆E · N =
GM
r2

[
cos f sNP + sin f sNQ

]
, (16)

where
sNP = skl N̂k P̂l , sNQ = skl N̂kQ̂l . (17)

Given the components of the perturbing acceleration, we may write the Gauss equa-
tions for the variations of the semi-major axis a, the eccentricity e, the inclination i, the
longitude of the ascending node Ω, and the argument of pericenter ω:

da
dt

=
2

nb
√

1− e2

[
e Er sin f + Et

( p
r

) ]
, (18)

de
dt

=

√
1− e2

nb a

{
Er sin f + Et

[
cos f +

1
e

(
1− r

a

)]}
, (19)

di
dt

=
1

nb a
√

1− e2
En

( r
a

)
cos(ω + f ), (20)

dΩ
dt

=
1

nb a sin i
√

1− e2
En

( r
a

)
sin(ω + f ), (21)

dω

dt
= − cos i

dΩ
dt

+

√
1− e2

nb a e

[
−Er cos f + Et

(
1 +

r
p

)
sin f

]
. (22)

In the above equations, nb = 2π/T is the Keplerian mean motion1, T is the test
particle’s orbital period, and p = a

(
1− e2) is the semilatus rectum.

In summary, in order to calculate the variation of orbital elements, we must evaluate
the perturbing acceleration onto the unperturbed Keplerian ellipse; then, it must be inserted
into Equations (18)–(22). Then, we must average over one orbital period T. To this end, the
following relation

dt =
(1− e2)3/2

nb (1 + e cos f )2 d f (23)
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is used.

3. The Method of Radial Velocity
As discussed by Iorio [4], the presence of a perturbing acceleration, whatever its origin

(Newtonian or non-Newtonian), modifies the velocity vector v of the motion of the test
particle relative to its primary.2 Namely (see also Casotto [34]), the instantaneous changes
∆vR, ∆vT , and ∆vN of the radial, transverse, and out-of-plane components vR, vT , and
vN are

∆vR( f ) =− nb a sin f√
1− e2

[
e

2a
∆a( f ) +

a
r( f )

∆e( f )
]
− nb a3

r2( f )
∆M( f )−

− nb a2

r( f )

√
1− e2 [cos i ∆Ω( f ) + ∆ω( f )], (24)

∆vT( f ) =− nb a
√

1− e2

2r( f )
∆a( f ) +

nb a(e + cos f )

(1− e2)
3/2 ∆e( f ) +

nb a e sin f√
1− e2

[cos i ∆Ω( f ) + ∆ω( f )], (25)

∆vN( f ) =
nb a√
1− e2

[(cos u + e cos ω)∆i( f ) + (sin u + e sin ω) sin i ∆Ω( f )]. (26)

In the above equation, there are the instantaneous changes of the Keplerian orbital
elements ∆a( f ), ∆e( f ), ∆i( f ), ∆Ω( f ), and ∆ω( f ); they can be calculated using the gen-
eral relation

∆κ( f ) =
∫ f

f0

dκ

dt
dt
d f ′

d f
′
, κ = a, e, i, Ω, ω, (27)

where the time derivatives can be obtained from the Gauss Equations (18)–(22) and dt
d f ′

from Equation (23), and f0 is the expression of the true anomaly at a given epoch.
The variation ∆M of the mean anomalyM can be calculated as in Iorio [35]. Care

must be taken for the latter quantity, since the possible change in the mean motion nb can
influence the mean anomaly variation ∆M [4]. In particular, this may happen when the
perturbing acceleration provokes a variation in the semimajor axis. As shown by Bailey
and Kostelecký [21], this is not the case for the modified gravity models with which we
are dealing.

Then, it is possible to obtain the instantaneous change experienced by the radial
velocity by taking the z component of the perturbation of the relative velocity ∆v =
∆vR R + ∆vT T + ∆vN N. Accordingly, we obtain

∆vz( f ) =− nb sin i(e cos ω + cos u)
2
√

1− e2
∆a( f )+

+
nb a sin i

{
4 cos(2 f + ω) + e[− cos( f −ω) + 4 cos u + cos(3 f + ω)]

}
4(1− e2)

3/2 ∆e( f )+

+
nb a cos i(e cos ω + cos u)√

1− e2
∆i( f )− nb a sin i(e sin ω + sin u)√

1− e2
∆ω( f )−

− nb a(1 + e cos f )2 sin i sin u

(1− e2)
2 ∆M( f ),

(28)

where u .
= ω + f is the argument of latitude.

Using Equation (28), we can calculate the net change of the radial velocity over an
orbital period, namely

〈∆vz〉 =
1
T

f0+2π∫
f0

dt
d f

∆vz d f . (29)
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The explicit expression of 〈∆vz〉 can be calculated, but it will not be displayed here,
since it is quite unmanageable; rather, to evaluate its magnitude, we perform an expansion
in powers of the eccentricity e and write the lowest order terms. Accordingly, we obtain

〈∆vz〉 '
a
T
(c0 + c1 e), (30)

where

c0 =
π

2

{
2 cos i

[
sNP sin f0 − sNQ cos f0

]
+

+ sin i cos( f0 + ω)
[

3 (sPP − sQQ) cos(2 f0)+

+ 2
(

6 s00 + sPP + sQQ + 3 sPQ sin(2 f0)
) ] }

,

(31)

and

c1 =
π

8

{
8 cos i cos f0

[
sNQ cos f0 − sNP sin f0

]
+

+ sin i
[

9 (sPP − sQQ) cos(2 f0 −ω) + 14 (6 s00 + sPP + sQQ) cos(ω)+

+ 2 (18 s00 + 7 sPP − sQQ) cos(2 f0 + ω) + 3 (sPP − sQQ) cos(4 f0 + ω)+

+ 2 sPQ
(
9 sin(2 f0 −ω) + 8 sin(2 f0 + ω) + 3 sin(4 f0 + ω)

)] }
.

(32)

The above expressions suggest there is a non null net change also at the zeroth order
in the eccentricity. We notice that the change in the radial velocity can be expressed in
the form

〈∆vz〉 ' vm ∆S, (33)

where vm is the mean orbital speed, and ∆S is a factor that is linear depending on the
elements of the Lorentz-violating matrix s̄µν; in addition, it depends on the (bounded)
trigonometric function of the angular orbital elements. We see from the expressions above
that the effect of the Lorentz-violating terms is enhanced in rapidly rotating systems, which
appear to be ideal candidates for observing such perturbations. In addition, we notice that
for rapidly rotating systems, data covering many orbital revolutions are available.

4. Discussion and Conclusions
As we showed above, the presence of Lorentz-violating terms produces a variation in

the radial velocity that can be written (see Equation (33)) in the form:

mean orbital speed × perturbation .

We emphasize that even though we refer to exoplanetary systems, these results can be
applied to any gravitationally bound binary system.

The elements of the Lorentz-violating matrix s̄µν were estimated from different tests,
including atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry,
planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays (see,
e.g., [36] and references therein). In particular, Hees et al. [36] (see Table 9) reported a com-
bined analysis of the best constraints deriving from various observations and experiments,
and the results ranged from 10−12 up to 10−5. In this regard, using the above (30)–(32),
for suitable systems featuring small eccentricity, perturbations of the order of ∼ m s−1 or
larger can be found.

As we stated in Section 2, in this context, it is of utmost importance to specify the
reference frame considered, and in our derivation, we referred to the reference frame at rest
with the system barycenter. However, the above constraints refer to an asymptotically iner-
tial frame co-moving with the solar system; as a consequence, as discussed by [37], to relate
the two frames, a Lorentz transformation is required, which can be considered as a pure
rotation, due to the smallness of the relative velocity of the planetary system with respect
to the solar system. Accordingly, we do not expect that these coordinate transformations
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would significantly change the order of magnitude of the estimates of the Lorentz-violating
terms. In any case, once the planetary system is chosen, the transformation can be easily
performed to obtain more precise estimates.

Recent perspectives on radial velocity measurements [38–40] have suggested that
a precision of 0.02–0.1 m s−1 could be attained in the near future. Accordingly, if these
techniques could be successfully applied to exoplanetary systems, we would have a new
opportunity to explore the impact of SME coefficients outside the solar system. To this end,
with planetary speeds of the order of 104 m s−1, constraints of the the order of 10−6 could
be obtained. However, the exploration of exoplanetary systems brings about features that
are unexpected, based on the knowledge of the solar system; for instance, there are planets
moving at very high speed, of the order of 105 m s−1 (see Lam et al. [41]). A combination of
these peculiar planets and improvements in detection techniques could lead to even tighter
constraints on the SME coefficients. The rough estimates of the upper bounds that can be
set on SME coefficients using data from the known exoplanets are shown in Table 1.

Table 1. Estimates for s̄µν for exoplanets with small eccentricity. The parameters to be used in
Formulas (30)–(32) can be found at http://exoplanet.eu, accessed on 7 November 2022.

Planet e 〈∆vz〉 (m/s) s̄µν

SDSS 1604 + 1000 b 0.04
1

0.1
0.01

∼10−5

∼10−6

∼10−7

GJ 367 b 0
1

0.1
0.01

∼10−6

∼10−7

∼10−8

WASP-19 b 0.0046
1

0.1
0.01

∼10−6

∼10−7

∼10−8

Kepler-411 e 0.016
1

0.1
0.01

∼10−5

∼10−6

∼10−7

In conclusion, it is important to point out that our results are intended to yield prelim-
inary insights on the potential of the method proposed to obtain constraints on the SME
coefficients, exploiting the continuous improvement in exoplanets’ exploration. In this
regard, our main claim is that the experimental precision in radial velocity measurements
could enable constraining the SME parameters in a new and different context; by comparing
the expected precision with typical orbital speeds, in fact, we showed that we can obtain
significant upper bounds on the SME parameters. In addition, we emphasized that the
orbit-averaged variations can be particularly useful, as due to their short periods, for many
exoplanetary systems, we have data records covering many orbital revolutions.

In order to obtain actual tests, the data of exoplanets should be reprocessed using
suitable dynamical schemes deriving from the gravity model that we are considering,
taking into account the possible degeneracy that could derive from other effects. In other
words, they should not be considered as actual tests but as an evaluation of the potentiality
of such investigation in exoplanet studies. In order to design a suitable test strategy, one
proposal could be a generalization of the method considered in a different scenario [42],
thus using a linear combination of observables from the same exoplanetary system. A
similar approach was already used for pulsars [37], where after the identification of the best
sources and of the most stringent observables, linear equations were obtained for the SME
coefficients, and Monte Carlo simulations were used to deal with unknown parameters
and measurement uncertainties.
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Notes
1 For an unperturbed Keplerian ellipse in the gravitational field of a body with mass M, it is nb =

√
GM/a3.

2 Notice that all the following results hold for the binary’s relative orbit; the resulting shift for the stellar RV can be straightforwardly
obtained by rescaling the final formula by the ratio of the planet’s mass to the sum of the masses of the parent star and of the
planet itself.
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