Thermal Casimir Effect in the Einstein Universe with a Spherical Boundary
Abstract
:1. Introduction
2. Einstein Universe and Generalized Zeta Function Method to Calculate Thermal Corrections
2.1. Einstein Universe with a Spherical Boundary
2.2. Zeta Function Method and Temperature Corrections
3. Finite Renormalization Terms and Renormalized Casimir Free Energy
4. Renormalized Thermodynamic Quantities and Asymptotic Limits
4.1. Low-Temperature Limit
4.2. High-Temperature Limit
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | The set of quantum modes in our case. |
3 | We call attention to the fact that is defined by (5), with and . |
4 |
References
- Ford, L.H. Quantum Vacuum Energy in General Relativity. Phys. Rev. D 1975, 11, 3370–3377. [Google Scholar] [CrossRef]
- Ford, L.H. Quantum Vacuum Energy in a Closed Universe. Phys. Rev. D 1976, 14, 3304–3313. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Thermal Casimir effect in closed Friedmann universe revisited. Phys. Rev. D 2011, 83, 104042. [Google Scholar]
- Bezerra, V.B.; Mostepanenko, V.M.; Mota, H.F.; Romero, C. Thermal Casimir effect for neutrino and electromagnetic fields in closed Friedmann cosmological model. Phys. Rev. D 2011, 84, 104025. [Google Scholar]
- Ozcan, M. Green’s function for a n-dimensional closed, static universe and with a spherical boundary. arXiv 2001, arXiv:gr-qc/0106082. [Google Scholar]
- Bayin, S.S.; Oezcan, M. Casimir effect in a ‘half Einstein universe’: An Exactly solvable case in curved background and with a spherical boundary. Class. Quant. Grav. 1993, 10, L115–L121. [Google Scholar]
- Kennedy, G.; Unwin, S.D. Casimir Cancellations in Half an Einstein Universe. J. Phys. A 1980, 13, L253–L258. [Google Scholar]
- Collaboration, P.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar]
- Ellis, G.F.R.; Maartens, R. The emergent universe: Inflationary cosmology with no singularity. Class. Quant. Grav. 2004, 21, 223–232. [Google Scholar]
- Ellis, G.F.R.; Murugan, J.; Tsagas, C.G. The Emergent universe: An Explicit construction. Class. Quant. Grav. 2004, 21, 233–250. [Google Scholar]
- Boehmer, C.G.; Lobo, F.S.N. Stability of the Einstein static universe in modified Gauss-Bonnet gravity. Phys. Rev. D 2009, 79, 067504. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Hollenstein, L.; Lobo, F.S.N. Stability of the Einstein static universe in f(R) gravity. Phys. Rev. D 2007, 76, 084005. [Google Scholar]
- Li, J.-T.; Lee, C.-C.; Geng, C.-Q. Einstein Static Universe in Exponential f(T) Gravity. Eur. Phys. J. C 2013, 73, 2315. [Google Scholar]
- Bezerra, V.B.; Mota, H.F.; Muniz, C.R. Casimir Effect in the Rainbow Einstein’s Universe. EPL 2017, 120, 10005. [Google Scholar] [CrossRef] [Green Version]
- Shabani, H.; Ziaie, A.H. Stability of the Einstein static universe in f(R,T) gravity. Eur. Phys. J. C 2017, 77, 31. [Google Scholar] [CrossRef] [Green Version]
- Casimir, H.B.G. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math. 1948, 10, 261–263. [Google Scholar]
- Maluf, R.V.; Dantas, D.M.; Almeida, C.A.S. The Casimir effect for the scalar and Elko fields in a Lifshitz-like field theory. Eur. Phys. J. C 2020, 80, 442. [Google Scholar]
- Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific: River Edge, NJ, USA, 2001; 301p. [Google Scholar]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; OUP Oxford: Oxford, UK, 2009. [Google Scholar]
- Khabibullin, A.R.; Khusnutdinov, N.R.; Sushkov, S.V. Casimir effect in a wormhole spacetime. Class. Quant. Grav. 2006, 23, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Sorge, F. Casimir effect around an Ellis wormhole. Int. J. Mod. Phys. D 2019, 29, 2050002. [Google Scholar]
- Garattini, R. Casimir Wormholes. Eur. Phys. J. C 2019, 79, 951. [Google Scholar] [CrossRef]
- Santos, A.C.L.; Muniz, C.R.; Oliveira, L.T. Casimir Effect in a Schwarzschild-Like Wormhole Spacetime. Int. J. Mod. Phys. D 2021, 30, 2150032. [Google Scholar] [CrossRef]
- Santos, A.C.L.; Muniz, C.R.; Oliveira, L.T. Casimir effect nearby and through a cosmological wormhole. EPL 2021, 135, 19002. [Google Scholar] [CrossRef]
- Alencar, G.; Bezerra, V.B.; Muniz, C.R. Casimir wormholes in 2 + 1 dimensions with applications to the graphene. Eur. Phys. J. C 2021, 81, 924. [Google Scholar] [CrossRef]
- Dowker, J.S.; Banach, R. Quantum Field Theory on Clifford-klein Space-times. The Effective Lagrangian and Vacuum Stress Energy Tensor. J. Phys. A 1978, 11, 2255. [Google Scholar]
- DeWitt, B.S.; Hart, C.F.; Isham, C.J. Topology and quantum field theory. Phys. A 1979, 96, 197–211. [Google Scholar]
- Lima, M.P.; Muller, D. Casimir effect in E**3 closed spaces. Class. Quant. Grav. 2007, 24, 897–914. [Google Scholar]
- Zhuk, A.; Kleinert, H. Casimir effect at nonzero temperatures in a closed Friedmann universe. Theor. Math. Phys. 1996, 109, 1483–1493. [Google Scholar]
- Bezerra, V.B.; Mota, H.F.; Muniz, C.R. Thermal Casimir effect in closed cosmological models with a cosmic string. Phys. Rev. D 2014, 89, 024015. [Google Scholar] [CrossRef]
- Mota, H.F.; Bezerra, V.B. Topological thermal Casimir effect for spinor and electromagnetic fields. Phys. Rev. D 2015, 92, 124039. [Google Scholar]
- Bezerra, V.B.; Mota, H.F.; Muniz, C.R. Remarks on a gravitational analogue of the Casimir effect. Int. J. Mod. Phys. D 2016, 25, 1641018. [Google Scholar]
- Bezerra, V.B.; Mota, H.F.S.; Muniz, C.R.; Filho, C.A.R. Remarks on Some Results Related to the Thermal Casimir Effect in Einstein and Closed Friedmann Universes with a Cosmic String. Universe 2021, 7, 232. [Google Scholar] [CrossRef]
- Herdeiro, C.A.R.; Ribeiro, R.H.; Sampaio, M. Scalar Casimir effect on a D-dimensional Einstein static universe. Class. Quant. Grav. 2008, 25, 165010. [Google Scholar]
- Mota, H.F.; de Mello, E.R.B.; Bakke, K. Scalar Casimir effect in a high-dimensional cosmic dispiration spacetime. Int. J. Mod. Phys. D 2018, 27, 1850107. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys. 1977, 55, 133–148. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D.; Romeo, A.; Bytsenko, A.A.; Zerbini, S. Zeta Regularization Techniques with Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Aleixo, G.; Mota, H.F.S. Thermal Casimir effect for the scalar field in flat spacetime under a helix boundary condition. Phys. Rev. D 2021, 104, 045012. [Google Scholar] [CrossRef]
- Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M. Thermal Casimir effect in ideal metal rectangular boxes. Eur. Phys. J. C 2008, 57, 823–834. [Google Scholar] [CrossRef] [Green Version]
- Dowker, J.S.; Kennedy, G. Finite Temperature and Boundary Effects in Static Space-Times. J. Phys. A 1978, 11, 895. [Google Scholar] [CrossRef]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 1956, 2, 73–83. [Google Scholar]
- Saharian, A.A. The Generalized Abel-Plana Formula: Applications to Bessel Functions and Casimir Effect. Available online: http://xxx.lanl.gov/abs/hep-th/0002239 (accessed on 14 October 2022).
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; National Bureau of Standards: Washington, DC, USA, 1964. [Google Scholar]
- Gradshtein, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Burlington, MA, USA, 1980. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, Part I; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, H.F.S.; Muniz, C.R.; Bezerra, V.B. Thermal Casimir Effect in the Einstein Universe with a Spherical Boundary. Universe 2022, 8, 597. https://doi.org/10.3390/universe8110597
Mota HFS, Muniz CR, Bezerra VB. Thermal Casimir Effect in the Einstein Universe with a Spherical Boundary. Universe. 2022; 8(11):597. https://doi.org/10.3390/universe8110597
Chicago/Turabian StyleMota, Herondy F. S., Celio R. Muniz, and Valdir B. Bezerra. 2022. "Thermal Casimir Effect in the Einstein Universe with a Spherical Boundary" Universe 8, no. 11: 597. https://doi.org/10.3390/universe8110597
APA StyleMota, H. F. S., Muniz, C. R., & Bezerra, V. B. (2022). Thermal Casimir Effect in the Einstein Universe with a Spherical Boundary. Universe, 8(11), 597. https://doi.org/10.3390/universe8110597