The Barium Odd Isotope Fractions in Seven Ba Stars
Abstract
:1. Introduction
2. Observations and Data Reduction
3. Stellar Parameters and Model Atmospheres
4. The Barium Odd Isotopic Fractions
4.1. Ba Abundance
4.2. The Barium Odd Isotopic Fraction
5. Origins of the Heavy Elements for Our Sample Barium Stars
5.1. AGB Model Predictions
5.2. Origin of the Five Normal Ba Stars
5.3. An Intrinsic Ba Star HD 218356?
5.4. An r-Rich Ba Star, BD+
5.5. Characters of in Ba Dwarfs and Ba Giants
6. Conclusions
- HD 218356 is likely to be a more evolved extrinsic Ba star at the stage of EAGB evolution based on its atmospheric parameters, the largest NLTE Ba abundance, and the lowest value in our Ba samples, whose massive companion should have the largest s-process efficiency in our Ba samples.
- BD+ have a large value of 0.28 , which is similar to the value of the CEMP-r/s star HE 0338-3945. Thus, we speculate that it is likely to be an r-rich Ba star, as suggested by Cui et al. [79], and to have similar origins to the CEMP-r/s stars.
- The values of the other five Ba stars spread around the solar value 0.18, which indicates that they do not experience additional r-process enrichment, and the evolution of the Milky Way can be responsible for the r-process contributions in these stars. Therefore, we suggest that these Ba stars have similar origins, that is the enrichment of heavy elements is due to the matter accretion occurring in a binary system.
- There is a good anti-correlation between the [Ba/Eu] and values for our Ba stars, and the effect of their orbital separations on is negligible. This indicates that could be a good probe for studying the neutron capture nucleosynthesis. Moreover, we note that the value predicted by the AGB models decreases with decreasing metallicities, which indicates that the value is also a direct tracer for the efficiency of the s-process nucleosynthesis.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | , where N is the number density of Ba isotopes. |
References
- Bidelman, W.P.; Keenan, P.C. The Ba II Stars. Astrophys. J. 1951, 114, 473. [Google Scholar] [CrossRef]
- Tomkin, J.; Lambert, D.L.; Edvardsson, B.; Gustafsson, B.; Nissen, P.E. HR 107—An F-type mild barium dwarf star. Astron. Astrophys. 1989, 219, L15–L18. [Google Scholar]
- Burris, D.L.; Pilachowski, C.A.; Armroff, T.E.; Sneden, C.; Cowan, J.J.; Roe, H. Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants. Astrophys. J. 2000, 544, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Gallino, R. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
- Straniero, O.; Gallino, R.; Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311–339. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E.; Wilson, J.R.; Mathews, G.J.; Hoffman, R.D.; Meyer, B.S. The r-Process and Neutrino-heated Supernova Ejecta. Astrophys. J. 1994, 433, 229. [Google Scholar] [CrossRef]
- Rosswog, S.; Davies, M.B.; Thielemann, F.-K.; Piran, T. Merging neutron stars: Asymmetric systems. Astron. Astrophys. 2000, 360, 171–184. [Google Scholar]
- Goriely, S.; Bauswein, A.; Just, O.; Pllumbi, E.; Janka, H.-T. Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron star mergers. Mon. Not. R. Astron. Soc. 2015, 452, 3894–3904. [Google Scholar] [CrossRef] [Green Version]
- McClure, R.D.; Fletcher, J.M.; Nemec, J.M. The binary nature of the barium stars. Astrophys. J. 1980, 238, L35–L38. [Google Scholar] [CrossRef]
- McClure, R.D. The binary nature of the barium stars. II. Velocities, binary frequency, and preliminary orbits. Astrophys. J. 1983, 268, 264–273. [Google Scholar] [CrossRef]
- Böhm-Vitense, E.; Carpenter, K.; Robinson, R.; Ake, T.; Brown, J. Do All BA II Stars Have White Dwarf Companions? Astrophys. J. 2000, 533, 969–983. [Google Scholar] [CrossRef]
- Bilíková, J.; Chu, Y.-H.; Gruendl, R.A.; Maddox, L.A. Hard X-ray Emission Associated with White Dwarfs. III. Astron. J. 2010, 140, 1433–1443. [Google Scholar] [CrossRef]
- Gray, R.O.; McGahee, C.E.; Griffin, R.E.M.; Corbally, C.J. First Direct Evidence That Barium Dwarfs Have White Dwarf Companions. Astron. J. 2011, 141, 160. [Google Scholar] [CrossRef]
- Bidelman, W.P. Objective-prism discoveries in the declination zone 0 to −20. Astron. J. 1981, 86, 553–556. [Google Scholar] [CrossRef]
- Bidelman, W.P. Objective-prism discoveries in the Northern sky. I. Astron. J. 1983, 88, 1182–1186. [Google Scholar] [CrossRef]
- Bidelman, W.P. Objective-prism discoveries in the northern sky. II. Astron. J. 1985, 90, 341–345. [Google Scholar] [CrossRef]
- North, P.; Berthet, S.; Lanz, T. The nature of the F STR lambda 4077 stars. III. Spectroscopy of the barium dwarfs and other CP stars. Astron. Astrophys. 1994, 281, 775–796. [Google Scholar]
- Porto de Mello, G.F.; da Silva, L. HR 6094: A Young, Solar-Type, Solar-Metallicity Barium Dwarf Star. Astrophys. J. 1997, 476, L89–L92. [Google Scholar] [CrossRef]
- Pereira, C.B. Spectroscopic Verification of Barium Dwarf Candidates: The Analysis of HD 8270, HD 13551, and HD 22589. Astron. J. 2005, 129, 2469–2480. [Google Scholar] [CrossRef]
- Gray, R.O.; Griffin, R.E.M. HD 26367: A Nearby, Newly Identified Barium Dwarf. Astron. J. 2007, 134, 96–101. [Google Scholar] [CrossRef]
- Pompéia, L.; Allen, D.M. HD 11397 and HD 14282: Two new barium stars? Astron. Astrophys. 2008, 488, 723–729. [Google Scholar] [CrossRef] [Green Version]
- North, P.; Lanz, T. The nature of the F STR lambda 4077 stars. IV. Search for white dwarfs around barium dwarfs. Astron. Astrophys. 1991, 251, 489. [Google Scholar]
- Edvardsson, B.; Andersen, J.; Gustafsson, B.; Lambert, D.L.; Nissen, P.E.; Tomkin, J. The chemical evolution of the galactic disk II. Observational data. Astron. Astrophys. Suppl. Ser. 1933, 102, 603. [Google Scholar]
- Kong, X.M.; Bharat, K.Y.; Zhao, G.; Zhao, J.K.; Fang, X.S.; Shi, J.R.; Yan, H.L. Three new barium dwarfs with white dwarf companions: BD+68°1027, RE J0702+129 and BD+80°670. Mon. Not. R. Astron. Soc. 2018, 474, 2129. [Google Scholar] [CrossRef] [Green Version]
- Cowley, C.R.; Frey, M. Hyperfine Structure in the Barium Resonance Line: Curves of Growth for Solar and r-Process Isotopic Mixtures. Astrophys. J. 1989, 346, 1030. [Google Scholar] [CrossRef]
- Magain, P.; Zhao, G. Barium isotopes in the very metal-poor star HD 140283. Astron. Astrophys. 1993, 268, L27–L29. [Google Scholar]
- Arlandini, C. Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures. Astrophys. J. 1999, 525, 886–900. [Google Scholar] [CrossRef] [Green Version]
- Magain, P. Heavy elements in halo stars: The r/s-process controversy. Astron. Astrophys. 1995, 297, 686. [Google Scholar]
- Lambert, D.L.; Allende Prieto, C. The isotopic mixture of barium in the metal-poor subgiant HD 140283. Mon. Not. R. Astron. Soc. 2002, 335, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Collet, R.; Asplund, M.; Nissen, P.E. The Barium Isotopic Abundance in the Metal-Poor Star HD140283. Publ. Astron. Soc. Aust. 2009, 26, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, A.J.; Ryan, S.G.; García, P.A.E.; Aoki, W. The barium isotopic mixture for the metal-poor subgiant star HD 140283. Astron. Astrophys. 2010, 523, A24. [Google Scholar] [CrossRef]
- Gallagher, A.J.; Ryan, S.G.; Hosford, A.; García, P.A.E.; Aoki, W.; Honda, S. The barium isotopic fractions in five metal-poor stars. Astron. Astrophys. 2012, 538, A118. [Google Scholar] [CrossRef]
- Mashonkina, L.; Zhao, G. Barium even-to-odd isotope abundance ratios in thick disk and thin disk stars. Astron. Astrophys. 2006, 456, 313–321. [Google Scholar] [CrossRef]
- Meng, X.Y.; Cui, W.Y.; Shi, J.R.; Jiang, X.H.; Zhao, G.; Zhang, B.; Li, J. The odd isotope fractions of barium in CEMP-r/s star HE 0338-3945 and r-II star CS 31082-001. Astron. Astrophys. 2016, 593, A62. [Google Scholar] [CrossRef] [Green Version]
- Wenyuan, C.; Xiaohua, J.; Jianrong, S.; Gang, Z.; Bo, Z. The Odd Isotope Fractions of Barium in the Strongly r-process-enhanced (r-II) Stars. Astrophys. J. 2018, 854, 131. [Google Scholar] [CrossRef] [Green Version]
- Holberg, J.B.; Oswalt, T.D.; Sion, E.M.; Barstow, M.A.; Burleigh, M.R. Where are all the Sirius-like binary systems? Mon. Not. R. Astron. Soc. 2013, 435, 2077–2091. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.M. Chemical abundances of primary stars in the Sirius-like binary systems. Mon. Not. R. Astron. Soc. 2018, 476, 724–740. [Google Scholar] [CrossRef]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Mizuno-Wiedner, M.; Plez, B. A New MARCS Grid. Model. Stellar Atmos. 2003, 210, A4. [Google Scholar]
- Asplund, M. New Light on Stellar Abundance Analyses: Departures from LTE and Homogeneity. Annu. Rev. Astron. Astrophys. 2005, 43, 481–530. [Google Scholar] [CrossRef]
- Sitnova, T. Systematic Non-LTE Study of the -2.6 < [Fe/H] < 0.2 F and G dwarfs in the Solar Neighborhood. I. Stellar Atmosphere Parameters. Astrophys. J. 2015, 808, 225. [Google Scholar] [CrossRef] [Green Version]
- Grupp, F. MAFAGS-OS: New opacity sampling model atmospheres for A, F and G stars. I. The model and the solar flux. Astron. Astrophys. 2004, 420, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Grupp, F.; Kurucz, R.L.; Tan, K. New extended atomic data in cool star model atmospheres. Using Kurucz’s new iron data in MAFAGS-OS models. Astron. Astrophys. 2009, 503, 177–181. [Google Scholar] [CrossRef]
- Kurucz, R.L. 2009. Available online: http://kurucz.harvard.edu/atoms/2600/ (accessed on 12 July 2020).
- Kurucz, R.L. 2009. Available online: http://kurucz.harvard.edu/atoms/2601/ (accessed on 12 July 2020).
- Kurucz, R.L. 2009. Available online: http://kurucz.harvard.edu/atoms/2602/ (accessed on 12 July 2020).
- Reetz, J.K. Sauerstoff in kühlen Sternen und die chemische Entwicklung der Galaxis. Ph.D. Thesis, Universität München, München, Germany, 1991. [Google Scholar]
- Mashonkina, L.; Gehren, T.; Shi, J.-R.; Korn, A.J.; Grupp, F. A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars. Astron. Astrophys. 2011, 528, A87. [Google Scholar] [CrossRef]
- Bensby, T.; Feltzing, S.; Oey, M.S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 2014, 562, a71. [Google Scholar] [CrossRef] [Green Version]
- Butler, K.; Giddings, J. Newsletter on the Analysis of Astronomical Spectra, No 9; University of London: London, UK, 1985. [Google Scholar]
- Gaia Collaboration. Gaia Data Release 3: Summary of the content and survey properties. arXiv 2022, arXiv:2012.01533. [Google Scholar]
- Lindegren, L. Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys. 2021, 649, A4. [Google Scholar] [CrossRef]
- Da Silva, L.; Girardi, L.; Pasquini, L.; Setiawan, J.; von der Luhe, O.; de Medeiros, J.R.; Hatzes, A.; Dollinger, M.P.; Weiss, A. Basic physical parameters of a selected sample of evolved stars. Astron. Astrophys. 2016, 458, 609–623. [Google Scholar] [CrossRef]
- Alonso, A.; Arribas, S.; Martínez-Roger, C. The effective temperature scale of giant stars (F0-K5). II. Empirical calibration of Teff versus colours and [Fe/H]. Astron. Astrophys. Suppl. Ser. 1991, 140, 261–277. [Google Scholar] [CrossRef]
- Schlegel, D.J.; Finkbeiner, D.P.; Davis, M. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. Astrophys. J. 1998, 500, 525–553. [Google Scholar] [CrossRef]
- Beers, T.C. Metal Abundances and Kinematics of Bright Metal-poor Giants Selected from the LSE Survey: Implications for the Metal-weak Thick Disk. Astron. J. 2002, 124, 931–948. [Google Scholar] [CrossRef] [Green Version]
- Mashonkina, L.; Gehren, T.; Bikmaev, I. Barium abundances in cool dwarf stars as a constraint to s- and r-process nucleosynthesis. Astron. Astrophys. 1999, 343, 519–530. [Google Scholar]
- Smith, V.V.; Lambert, D.L.; Nissen, P.E. Isotopic Lithium Abundances in Nine Halo Stars. Astrophys. J. 1998, 506, 405–423. [Google Scholar] [CrossRef]
- Aoki, W.; Honda, S.; Beers, T.C.; Sneden, C. Measurement of the Europium Isotope Ratio for the Extremely Metal poor, r-Process-enhanced Star CS 31082-001. Astrophys. J. 2003, 586, 506. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef] [Green Version]
- Mathews, G.J.; Bazan, G.; Cowan, J.J. Evolution of Heavy-Element Abundances as a Constraint on Sites for Neutron-Capture Nucleosynthesis. Astrophys. J. 1992, 391, 719. [Google Scholar] [CrossRef]
- Bubar, E.J.; King, J.R. Spectroscopic Abundances and Membership in the Wolf 630 Moving Group. Astron. J. 2010, 140, 293–318. [Google Scholar] [CrossRef] [Green Version]
- Williams, M. First inverse kinematics study of the 22Ne(p,γ)23Na reaction and its role in AGB star and classical nova nucleosynthesis. Phys. Rev. C 2020, 102, 035801-1. [Google Scholar] [CrossRef]
- Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the Construction of Stellar Isochrones. Astrophys. J. Suppl. Ser. 2016, 222, 8. [Google Scholar] [CrossRef]
- Choi, J.; Dotter, A.; Conroy, C.; Cantiello, M.; Paxton, B.; Johnson, B.D. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models. Astrophys. J. 2016, 823, 102. [Google Scholar] [CrossRef]
- Paxton, B.; Bildsten, L.; Dotter, A.; Herwig, F.; Lesaffre, P.; Timmes, F. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 2011, 192, 3. [Google Scholar] [CrossRef]
- Paxton, B. Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars. Astrophys. J. Suppl. Ser. 2013, 208, 4. [Google Scholar] [CrossRef] [Green Version]
- Paxton, B. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions. Astrophys. J. Suppl. Ser. 2015, 220, 15. [Google Scholar] [CrossRef]
- Beers, T.C.; Christlieb, N. The Discovery and Analysis of Very Metal-Poor Stars in the Galaxy. Annu. Rev. Astron. Astrophys. 2005, 43, 531–580. [Google Scholar] [CrossRef] [Green Version]
- Jonsell, K. The Hamburg/ESO R-process enhanced star survey (HERES). III. HE 0338-3945 and the formation of the r + s stars. Astron. Astrophys. 2006, 451, 651–670. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Rose, W.K. Production of 14C and neutrons in red giants. Astrophys. J. 1977, 212, 149. [Google Scholar] [CrossRef]
- Fujimoto, M.Y.; Iben, I.; Hollowell, D. Helium Flashes and Hydrogen Mixing in Low-Mass Population III Stars. Astrophys. J. 1990, 349, 580. [Google Scholar] [CrossRef]
- Fujimoto, M.Y.; Ikeda, Y.; Iben, I. The Origin of Extremely Metal-poor Carbon Stars and the Search for Population III. Astrophys. J. 2000, 529, L25–L28. [Google Scholar] [CrossRef]
- Herwig, F. Convective-reactive Proton-12C Combustion in Sakurai’s Object (V4334 Sagittarii) and Implications for the Evolution and Yields from the First Generations of Stars. Astrophys. J. 2011, 727, 89. [Google Scholar] [CrossRef] [Green Version]
- Dardelet, L. I process and CEMP-s+r stars. XIII Nuclei in the Cosmos (NIC XIII). arXiv 2014, arXiv:1505.05500. [Google Scholar]
- Denissenkov, P.A. I-process Nucleosynthesis and Mass Retention Efficiency in He-shell Flash Evolution of Rapidly Accreting White Dwarfs. Astrophys. J. 2017, 834, L10. [Google Scholar] [CrossRef] [Green Version]
- Hampel, M.; Stancliffe, R.J.; Lugaro, M.; Meyer, B.S. The Intermediate Neutron-capture Process and Carbon-enhanced Metal-poor Stars. Astrophys. J. 2016, 831, 171. [Google Scholar] [CrossRef]
- Goswami, P.P.; Rathour, R.S.; Goswami, A. Spectroscopic study of CEMP-(s & r/s) stars. Revisiting classification criteria and formation scenarios, highlighting i-process nucleosynthesis. Astron. Astrophys. 2021, 649, A49. [Google Scholar] [CrossRef]
- Shejeelammal, J.; Goswami, A.; Shi, J. HCT/HESP study of two carbon stars from the LAMOST survey. Mon. Not. R. Astron. Soc. 2021, 502, 1008–1025. [Google Scholar] [CrossRef]
- Cui, W.Y.; Zhang, B.; Shi, J.R.; Zhao, G.; Wang, W.J.; Niu, P. Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars. Astron. Astrophys. 2014, 566, A16. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Eggleton, P.P.; Podsiadlowski, P.; Tout, C.A. The formation of barium and CH stars and related objects. Mon. Not. R. Astron. Soc. 1995, 277, 1443–1462. [Google Scholar] [CrossRef]
Star | Type | a (au) | (mas) | Spectrograph | Remark | |
---|---|---|---|---|---|---|
BD+ | 9.16 | 833.8 | 15.48 ± 0.15 | ARCES | dwarf | |
BD+ | 9.46 | 3027.8 | 11.43 ± 0.01 | ARCES | dwarf | |
REJ 0702+129 | 10.53 | – | 8.35 ± 0.48 | ARCES | dwarf | |
HD 218356 | 4.91 | – | 5.18 ± 0.11 | CES | giant | |
HD 202109 | 3.31 | 1.8 | 21.81 ± 0.14 | CES | giant | |
HR 5692 | - | 5.80 | 2.0 | 7.79 ± 0.22 | CES | giant |
HD 13611 | 4.47 | 3.8 | 10.42 ± 0.35 | CES | giant |
Star | (K) | (Spec) | (Parallax) | (km s) | [Fe/H] (NLTE) | [Fe/H] (LTE) | M () | References |
---|---|---|---|---|---|---|---|---|
BD+ | 5830 | 4.50 | 4.45 | 1.00 | 0.44 | 0.41 | 1.09 | This work |
5880 | 4.50 | 4.33 | 1.60 | - | 0.13 | 1.05 | KONG18(a) | |
BD+ | 5919 | 4.55 | 4.39 | 1.00 | −0.35 | −0.36 | 0.91 | This work |
5919 | 4.55 | 4.48 | 1.00 | - | −0.31 | 0.93 | KONG18(a) | |
REJ 0702+129 | 5581 | 4.50 | 4.45 | 1.50 | 0.13 | 0.11 | 0.98 | This work |
5531 | 4.20 | - | 1.90 | - | −0.06 | 0.93 | KONG18(a) | |
HD 218356 | 4359 | 1.50 | 1.41 | 2.20 | −0.58 | −0.59 | 2.03 | This work |
4459 | 1.87 | 1.67 | 1.90 | - | −0.43 | 2.50 | KONG18(b) | |
HD 202109 | 5030 | 2.70 | 2.61 | 1.90 | −0.13 | −0.15 | 2.66 | This work |
5010 | 2.70 | 2.68 | 1.70 | - | −0.01 | 3.20 | KONG18(b) | |
HR 5692 | 5076 | 2.83 | 2.70 | 1.30 | 0.07 | 0.05 | 2.63 | This work |
5076 | 2.83 | 2.86 | 1.30 | - | 0.02 | 2.80 | KONG18(b) | |
HD 13611 | 5184 | 2.60 | 2.36 | 1.50 | −0.02 | −0.02 | 3.20 | This work |
5184 | 2.60 | 2.45 | 1.50 | - | −0.01 | 3.80 | KONG18(b) |
Star | 5853.67Å | 6496.90Å | [Ba/Fe] | [Ba/Fe] | Contribution (%) | ||||
---|---|---|---|---|---|---|---|---|---|
LTE | NLTE | LTE | NLTE | LTE | NLTE | LTE | s-Process | ||
BD+ | 0.48 | 0.46 | 0.53 | 0.48 | 0.50 ± 0.04 | 0.47 ± 0.01 | 0.31 ± 0.03 | 0.17 ± 0.10 | 82.86 |
BD+ | 0.67 | 0.62 | 0.72 | 0.64 | 0.70 ± 0.04 | 0.63 ± 0.01 | 0.62 ± 0.07 | 0.28 ± 0.11 | 51.43 |
REJ 0702+129 | 0.67 | 0.63 | 0.70 | 0.68 | 0.68 ± 0.04 | 0.65 ± 0.04 | 0.56 ± 0.06 | 0.14 ± 0.09 | 91.43 |
HD 218356 | 1.10 | 1.02 | 1.14 | 1.06 | 1.12 ± 0.03 | 1.04 ± 0.03 | 1.01 ± 0.11 | 0.08 ± 0.10 | 100.00 |
HD 202109 | 0.60 | 0.56 | 0.70 | 0.67 | 0.65 ± 0.07 | 0.62 ± 0.08 | 0.52 ± 0.14 | 0.21 ± 0.13 | 71.43 |
HD 5692 | 0.64 | 0.60 | - | - | 0.64 ± 0.10 | 0.60 ± 0.10 | 0.61 ± 0.12 | 0.19 ± 0.11 | 77.14 |
HD 13611 | 0.54 | 0.50 | - | - | 0.54 ± 0.10 | 0.50 ± 0.10 | 0.52 ± 0.15 | 0.14 ± 0.12 | 91.43 |
Input Parameter | Input Error | BD + | BD + | REJ 0702+129 | HD 218356 | HD 202109 | HR 5692 | HD 13611 |
---|---|---|---|---|---|---|---|---|
+100 | +0.04 | −0.02 | +0.02 | +0.02 | −0.05 | +0.02 | −0.04 | |
−0.10 | −0.02 | +0.02 | −0.01 | +0.02 | −0.01 | +0.03 | +0.03 | |
+0.15 | +0.03 | +0.05 | +0.06 | +0.04 | +0.07 | +0.04 | +0.04 | |
−0.06 | +0.03 | +0.01 | +0.01 | −0.01 | −0.01 | −0.03 | +0.02 | |
+0.10 | −0.01 | +0.02 | −0.01 | −0.03 | +0.02 | −0.03 | −0.02 | |
−0.10 | +0.05 | +0.06 | +0.03 | +0.05 | +0.07 | +0.06 | +0.08 | |
+0.10 | −0.03 | +0.01 | +0.02 | −0.05 | −0.02 | +0.02 | −0.03 | |
G | −0.20 | +0.05 | −0.06 | −0.05 | +0.04 | −0.05 | +0.06 | −0.04 |
Ba abundance | +0.05 | +0.03 | −0.02 | +0.01 | +0.02 | −0.03 | −0.02 | +0.01 |
±0.10 | ±0.11 | ±0.09 | ±0.10 | ±0.13 | ±0.11 | ±0.12 |
BD+ | BD+ | REJ 0702+129 | HD 218356 | HD 202109 | HR 5692 | HD 13611 | |
---|---|---|---|---|---|---|---|
[Nd/Fe] | – | ||||||
[Eu/Fe] | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, F.; Cui, W.; Tian, M.; Zhang, X.; Shi, J.; Zhang, B. The Barium Odd Isotope Fractions in Seven Ba Stars. Universe 2022, 8, 596. https://doi.org/10.3390/universe8110596
Wen F, Cui W, Tian M, Zhang X, Shi J, Zhang B. The Barium Odd Isotope Fractions in Seven Ba Stars. Universe. 2022; 8(11):596. https://doi.org/10.3390/universe8110596
Chicago/Turabian StyleWen, Fang, Wenyuan Cui, Miao Tian, Xiaoxiao Zhang, Jianrong Shi, and Bo Zhang. 2022. "The Barium Odd Isotope Fractions in Seven Ba Stars" Universe 8, no. 11: 596. https://doi.org/10.3390/universe8110596
APA StyleWen, F., Cui, W., Tian, M., Zhang, X., Shi, J., & Zhang, B. (2022). The Barium Odd Isotope Fractions in Seven Ba Stars. Universe, 8(11), 596. https://doi.org/10.3390/universe8110596