Modeling of Solar Wind Disturbances Associated with Coronal Mass Ejections and Verification of the Forecast Results
Abstract
:1. Introduction
2. Data and Methods
2.1. Main Principles of SMDC and Sources of the Input Data
2.2. Identification of the CME Sources and Selection of Events for Analysis
- Step 1: CME merging
- Step 2: Angular CME filter
- Step 3: CME-dimming correspondence
- Step 4: Filtering of the limb events
2.3. Modeling of the Background SW in the Heliosphere
2.4. Modeling of CME Propagation in the Heliosphere by DBM
2.5. Scheme of Basic SMDC Forecasting System
3. Results
3.1. SMDC Test Results for 2015–2017 in Comparison with the ICME Catalogs and the CCMC Scoreboard Results
3.2. Optimization of the Prediction Algorithm and Estimation of the Confidence Intervals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gringauz, K.I. Some results of experiments in interplanetary space by means of charged particle traps on Soviet space probes. In Proceedings of the Second International Space Science Symposium, Florence, Italy, 10–14 April 1961. [Google Scholar]
- Neugebauer, M.; Snyder, C.W. Solar Plasma Experiment. Science 1962, 138, 1095–1097. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011). J. Space Weather Space Clim. 2012, 2, A02. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Large-scale solar wind structures: Occurrence rate and geoeffectiveness. In Proceedings of the 12th International Solar Wind Conference, Saint-Malo, France, 21–26 June 2009. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G.; Cliver, E.W.; Cane, H.V. Sources of geomagnetic activity over the solar cycle: Relative importance of CMEs, high-speed streams, and slow solar wind. J. Geophys. Res. 2000, 105, 18203–18213. [Google Scholar] [CrossRef]
- Rust, D.M.; Hildner, E. Expansion of an X-ray coronal arch into the outer corona. Sol. Phys. 1976, 48, 381–387. [Google Scholar] [CrossRef]
- Hudson, H.S.; Lemen, J.R.; St. Cyr, O.C.; Sterling, A.C.; Webb, D.F. X-ray coronal changes during Halo CMEs. Geophys. Res. Lett. 1998, 25, 2481–2484. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.A.; Bryans, P.; Simnett, G.M.; Lyons, M. Coronal dimming and the coronal mass ejection onset. Astron. Astrophys. 2003, 400, 1071–1083. [Google Scholar] [CrossRef]
- Zhang, J.; Dere, K.P.; Howard, R.A.; Bothmer, V. Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000. Astrophys. J. 2003, 582, 520–533. [Google Scholar] [CrossRef]
- Watari, S. Geomagnetic storms of cycle 24 and their solar sources. Earth Planets Space 2017, 69, 70. [Google Scholar] [CrossRef]
- Syed Ibrahim, M.; Joshi, B.; Cho, K.S.; Kim, R.-S.; Moon, Y.-J. Interplanetary Coronal Mass Ejec-tions During Solar Cycles 23 and 24: Sun–Earth Propagation Characteristics and Consequences at the Near-Earth Region. Sol. Phys. 2019, 294, 54. [Google Scholar] [CrossRef]
- Plunkett, S.P.; Singh, A.K. Coronal Mass Ejections (CMEs) and their geoeffectiveness during Solar Cycles 23 and 24: A comparative analysis of observational properties. Int. J. Emerg. Technol. Innov. Res. 2021, 8, b123–b137. [Google Scholar]
- Scolini, C.; Messerotti, M.; Poedts, S.; Rodriguez, L. Halo coronal mass ejections during Solar Cycle 24: Reconstruction of the global scenario and geoeffectiveness. J. Space Weather Space Clim. 2018, 8, A09. [Google Scholar] [CrossRef] [Green Version]
- Gopalswamy, N.; Yashiro, S.; Akiyama, S.; Xie, H. Estimation of Reconnection Flux Using Post-eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU. Sol. Phys. 2017, 292, 65. [Google Scholar] [CrossRef] [Green Version]
- Chertok, I.M.; Grechnev, V.V.; Abunin, A.A. An early diagnostics of the geoeffectiveness of solar eruptions from photospheric magnetic flux observations: The transition from SOHO to SDO. Sol. Phys. 2017, 292, 62. [Google Scholar] [CrossRef] [Green Version]
- Grechnev, V.V.; Kochanov, A.A.; Uralov, A.M.; Slemzin, V.A.; Rodkin, D.G.; Goryaev, F.F.; Kiselev, V.I.; Myshyakov, I.I. Development of a Fast CME and Properties of a Related Interplanetary Transient. Sol. Phys. 2019, 294, 139. [Google Scholar] [CrossRef]
- Lynch, B.J.; Al-Haddad, N.; Yu, W.; Palmerio, E.; Lugaz, N. On the utility of flux rope models for CME magnetic structure below 30R. Adv. Space Res. 2022, 70, 1614–1640. [Google Scholar] [CrossRef]
- Arge, C.N.; Pizzo, V.J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 2000, 105, 10465–10479. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Sheeley, N.R., Jr. Solar wind speed and coronal flux-tube expansion. Astrophys. J. 1990, 355, 726–732. [Google Scholar] [CrossRef]
- Nolte, J.T.; Krieger, A.S.; Timothy, A.F.; Gold, R.E.; Roelof, E.C.; Vaiana, G.; Lazarus, A.J.; Sullivan, J.D.; McIntosh, P.S. Coronal holes as source of solar wind. Sol. Phys. 1976, 46, 303–322. [Google Scholar] [CrossRef]
- Bu, X.; Luo, B.; Shen, C.; Liu, S.; Gong, J.; Cao, Y.; Wang, H. Forecasting high-speed solar wind streams based on solar extreme ultraviolet images. Space Weather 2019, 17, 1040–1058. [Google Scholar] [CrossRef]
- Rotter, T.; Veronig, A.M.; Temmer, M.; Vršnak, B. Real-time solar wind prediction based on SDO/AIA coronal hole data. Sol. Phys. 2015, 290, 1355–1370. [Google Scholar] [CrossRef]
- Shugay, Y.; Slemzin, V.; Rodkin, D.; Yermolaev, Y.; Veselovsky, I. Influence of coronal mass ejections on parameters of high-speed solar wind: A case study. J. Space Weather Space Clim. 2018, 8, A28. [Google Scholar] [CrossRef]
- Vršnak, B.; Temmer, M.; Veronig, A.M. Coronal holes and solar wind high-speed streams: I. forecasting the solar wind parame-ters. Sol. Phys. 2007, 240, 315–330. [Google Scholar] [CrossRef]
- Owens, M.J.; Challen, R.; Methven, J.; Henley, E.; Jackson, D.R. A 27 day persistence model of near-Earth solar wind conditions: A long lead-time forecast and a benchmark for dynamical models. Space Weather 2013, 11, 225–236. [Google Scholar] [CrossRef]
- Hudson, H.S.; Acton, L.W.; Freeland, S.L. A Long-Duration Solar Flare with Mass Ejection and Global Consequences. Astrophys. J. 1996, 470, 629. [Google Scholar] [CrossRef]
- Webb, D.F.; Lepping, R.P.; Burlaga, L.F.; DeForest, C.E.; Larson, D.E.; Martin, S.F.; Plunkett, S.P.; Rust, D.M. The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. Space Phys. 2000, 105, 27251–27259. [Google Scholar] [CrossRef]
- Muhr, N.; Vršnak, B.; Temmer, M.; Veronig, A.M.; Magdalenić, J. ANALYSIS OF A GLOBAL MORETON WAVE OBSERVED ON 2003 OCTOBER 28. Astrophys. J. 2010, 708, 1639–1649. [Google Scholar] [CrossRef] [Green Version]
- Attrill, G.D.R.; Harra, L.K.; van Driel-Gesztelyi, L.; Démoulin, P.; Wülser, J.-P. Coronal “wave”: A signature of the mechanism making CMEs largescale in the low corona? Astron. Nachr. 2007, 328, 760–763. [Google Scholar] [CrossRef]
- Mandrini, C.H.; Nakwacki, M.S.; Attrill, G.; van Driel-Gesztelyi, L.; Démoulin, P.; Dasso, S.; Elliott, H. Are CME-Related Dimmings Always a Simple Signature of Interplanetary Magnetic Cloud Footpoints? Sol. Physics. 2007, 244, 25–43. [Google Scholar] [CrossRef]
- Mason, J.P.; Woods, T.N.; Webb, D.F.; Thompson, B.J.; Colaninno, R.C.; Vourlidas, A. RELATIONSHIP OF EUV IRRADIANCE CORONAL DIMMING SLOPE AND DEPTH TO CORONAL MASS EJECTION SPEED AND MASS. Astrophys. J. 2016, 830, 20. [Google Scholar] [CrossRef] [Green Version]
- Dissauer, K.; Veronig, A.M.; Temmer, M.; Podladchikova, T. Statistics of Coronal Dimmings Associated with Coronal Mass Ejections. II. Relationship between Coronal Dimmings and Their Associated CMEs. Astrophys. J. 2019, 874, 123. [Google Scholar] [CrossRef]
- Jin, M.; Cheung, M.C.M.; DeRosa, M.L.; Nitta, N.V.; Schrijver, C.J. Coronal Mass Ejections and Dimmings: A Comparative Study Using MHD Simulations and SDO Observations. Astrophys. J. 2022, 928, 154. [Google Scholar] [CrossRef]
- Kraaikamp, E.; Verbeeck, C. Solar Demon–an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J. Space Weather Space Clim. 2015, 5, A18. [Google Scholar] [CrossRef] [Green Version]
- St. Cyr, O.C.; Howard, R.A.; Sheeley, N.R.; Plunkett, S.P.; Michels, D.J.; Paswaters, S.E.; Koomen, M.J.; Simnett, G.M.; Thompson, B.J.; Gurman, J.B.; et al. Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res. 2000, 105, 18169–18185. [Google Scholar] [CrossRef]
- Andrews, M.D.; Howard, R.A. A two-type classification of LASCO coronal mass ejection. Space Sci. Rev. 2001, 95, 147–163. [Google Scholar] [CrossRef]
- Shen, F.; Wu, S.T.; Feng, X.; Wu, C.-C. Acceleration and deceleration of coronal mass ejections during propagation and interaction. J. Geophys. Res. 2012, 117, A11101. [Google Scholar] [CrossRef] [Green Version]
- Vourlidas, A.; Howard, R.A.; Esfandiari, E.; Patsourakos, S.; Yashiro, S.; Michalek, G. Comprehensive Analysis of Coronal Mass Ejection Mass and Energy Properties over A Full Solar Cycle. Astrophys. J. 2011, 722, 1522–1538. [Google Scholar] [CrossRef] [Green Version]
- Gopalswamy, N.; Dal Lago, A.; Yashiro, S.; Akiyama, S. The Expansion and Radial Speeds of Coronal Mass Ejections. Cent. Eur. Astrophys. Bull. 2009, 33, 115–124. [Google Scholar]
- Na, H.; Moon, Y.-J.; Lee, H. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections. Astrophys. J. 2017, 839, 82. [Google Scholar] [CrossRef]
- Cargill, P.J.; Chen, J.; Spicer, D.S.; Zalesak, S.T. Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res. 1996, 101, 4855–4870. [Google Scholar] [CrossRef]
- Cargill, P.J. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol. Phys. 2004, 221, 135–149. [Google Scholar] [CrossRef]
- Vršnak, B.; Žic, T.; Falkenberg, T.V.; Möstl, C.; Vennerstrom, S.; Vrbanec, D. The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 2010, 512, A43. [Google Scholar] [CrossRef]
- Vršnak, B.; Žic, T.; Vrbanec, D.; Temmer, M.; Rollett, T.; Möstl, C.; Veronig, A.; Čalogović, J.; Dumbović, M.; Lulić, S.; et al. Propagation of interplanetary coronal mass ejections: The drag-based model. Sol. Phys. 2013, 285, 295–315. [Google Scholar] [CrossRef]
- Vršnak, B.; Ruždjak, D.; Sudar, D.; Gopalswamy, N. Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? Astron. Astrophys. 2004, 423, 717–728. [Google Scholar] [CrossRef]
- Vršnak, B. Analytical and empirical modelling of the origin and heliospheric propagation of coronal mass ejections, and space weather applications. J. Space Weather Space Clim. 2021, 11, 34. [Google Scholar] [CrossRef]
- Vourlidas, A.; Patsourakos, S.; Savani, N.P. Predicting the geoeffective properties of coronal mass ejections: Current status, open issues and path forward. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180096. [Google Scholar] [CrossRef]
- Dumbovic, M.; Calogovic, J.; Martinic, K.; Vrsnak, B.; Sudar, D.; Temmer, M.; Veronig, A. Drag-based model (DBM) tools for forecast of coronal mass ejection arrival time and speed. Front. Astron. Space Sci. 2021, 8, 58. [Google Scholar] [CrossRef]
- Žic, T.; Vršnak, B.; Temmer, M. Heliospheric propagation of coronal mass ejections: Drag-based model fitting. Astrophys. J. Suppl. Ser. 2015, 218, 32. [Google Scholar] [CrossRef] [Green Version]
- Hinterreiter, J.; Amerstorfer, T.; Temmer, M.; Reiss, M.A.; Weiss, A.J.; Möstl, C.; Barnard, L.A.; Pomoell, J.; Bauer, M.; Amerstorfer, U.V. Drag-based CME modeling with heliospheric images incorporating frontal deformation: ELEvoHI 2.0. Space Weather 2021, 19, e2021SW002836. [Google Scholar] [CrossRef]
- Napoletano, G.; Foldes, R.; Camporeale, E.; Gasperis, G.; Giovannelli, L.; Paouris, E.; Pietropaolo, E.; Teunissen, J.; Tiwari, A.K.; Del Moro, D. Parameter Distributions for the Drag-Based Modeling of CME Propagation. Space Weather 2022, 20, e2021SW002925. [Google Scholar] [CrossRef]
- Rollett, T.; Möstl, C.; Isavnin, A.; Davies, J.A.; Kubicka, M.; Amerstorfer, U.V.; Harrison, R.A. ElEvoHI: A novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting. Astrophys. J. 2016, 824, 131. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Yermolaev, M.Y.; Lodkina, I.G.; Nikolaeva, N.S. Statistical Investigation of Heliospheric Conditions Resulting in Magnetic Storms. Cosm. Res. 2007, 45, 1–8. [Google Scholar] [CrossRef]
- Lemen, J.R.; Title, A.M.; Akin, D.J.; Boerner, P.F.; Chou, C.; Drake, J.F.; Duncan, D.W.; Edwards, C.G.; Friedlaender, F.M.; Heyman, G.F.; et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Brueckner, G.E.; Howard, R.A.; Koomen, M.J.; Korendyke, C.M.; Michels, D.J.; Moses, J.D.; Socker, D.G.; Dere, K.P.; Lamy, P.L.; Llebaria, A.; et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 1995, 162, 357–402. [Google Scholar] [CrossRef]
- Lamy, P.L.; Floyd, O.; Boclet, B.; Wojak, J.; Gilardy, H.; Barlyaeva, T. Coronal Mass Ejections over Solar Cycles 23 and 24. Space Science Rev. 2019, 215, 39. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G.; Cane, H.V. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties. Sol. Phys. 2010, 264, 189–237. [Google Scholar] [CrossRef]
- Stone, E.C.; Frandsen, A.M.; Mewaldt, R.A.; Christian, E.R.; Margolies, D.; Ormes, J.F.; Snow, F. The Advanced Composition Explorer. Space Sci. Rev. 1998, 86, 1–22. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Catalog of Large-Scale Solar Wind Phenomena during 1976-2000. Cosm. Res. 2009, 47, 81–94. [Google Scholar] [CrossRef]
- Kaportseva, K.B.; Shugay, Y.S. Use of the DBM Model to the Predict of Arrival of Coronal Mass Ejections to the Earth. Cosm. Res. 2021, 59, 268–279. [Google Scholar] [CrossRef]
- Kilpua, E.K.J.; Jian, L.K.; Li, Y.; Luhmann, J.G.; Russell, C.T. Observations of ICMEs and ICME-like Solar Wind Structures from 2007 – 2010 Using Near-Earth and STEREO Observations. Sol. Phys. 2012, 281, 391–409. [Google Scholar] [CrossRef]
- Shugai, Y.S. Analysis of Quasistationary Solar Wind Stream Forecasts for 2010–2019. Russ. Meteorol. Hydrol. 2021, 46, 172–178. [Google Scholar] [CrossRef]
- Kalegaev, V.; Panasyuk, M.; Myagkova, I.; Shugay, Y.; Vlasova, N.; Barinova, W.; Beresneva, E.; Bobrovnikov, S.; Eremeev, V.; Dolenko, S.; et al. Monitoring, analysis and post-casting of the Earth’s particle radiation environment during February 14–March 5, 2014. J. Space Weather Space Clim. 2019, 9, A29. [Google Scholar] [CrossRef]
- Reiss, M.A.; Temmer, M.; Veronig, A.M.; Nikolic, L.; Vennerstrom, S.; Schöngassner, F.; Hofmeister, S.J. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 2016, 14, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Riley, P.; Mays, M.L.; Andries, J.; Amerstorfer, T.; Biesecker, D.; Delouille, V.; Dumbović, M.; Feng, X.; Henley, E.; Linker, J.A.; et al. Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard. Space Weather 2018, 16, 1245–1260. [Google Scholar] [CrossRef] [Green Version]
- Mays, M.L.; Taktakishvili, A.; Pulkkinen, A.; MacNeice, P.J.; Rastätter, L.; Odstrcil, D.; Jian, L.K.; Richardson, I.G.; LaSota, J.A.; Zheng, Y.; et al. Ensemble Modeling of CMEs Using the WSA–ENLIL+Cone Model. Sol. Phys. 2015, 290, 1775–1814. [Google Scholar] [CrossRef] [Green Version]
- Dumbović, M.; Čalogović, J.; Vršnak, B.; Temmer, M.; May, M.L.; Veronig, A.; Piantschitsch, I. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation. Astrophys. J. 2018, 854, 180. [Google Scholar] [CrossRef]
- Čalogović, J.; Dumbović, M.; Sudar, D.; Vršnak, B.; Martinić, K.; Temmer, M.; Veronig, A. Probabilistic Drag-Based Ensemble Model (DBEM) Evaluation for Heliospheric Propagation of CMEs. Sol. Phys. 2021, 296, 114. [Google Scholar] [CrossRef]
- Napoletano, G.; Forte, R.; Del Moro, D.; Pietropaolo, E.; Giovannelli, L.; Berrilli, F. A probabilistic approach to the drag-based model. J. Space Weather Space Clim. 2018, 8, A11. [Google Scholar] [CrossRef] [Green Version]
- Hess, P.; Zhang, J. Stereoscopic study of the kinematic evolution of a coronal mass ejection and its driven shock from the sun to the earth and the prediction of their arrival times. Astrophys. J. 2014, 792, 49. [Google Scholar] [CrossRef]
- Rodkin, D.; Slemzin, V.; Zhukov, A.N.; Goryaev, F.; Shugay, Y.; Veselovsky, I. Single ICMEs and Complex Transient Structures in the Solar Wind in 2010–2011. Sol. Phys. 2018, 293, 78. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, C.; Wang, S.; Ye, P. Deflection of coronal mass ejection in the interplanetary medium. Sol. Phys. 2004, 222, 329–343. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Shen, C.; Shen, F.; Lugaz, N. Deflected propagation of a coronal mass ejection from the corona to interplanetary space. J. Geophys. Res. Space Phys. 2014, 119, 5117–5132. [Google Scholar] [CrossRef]
- Prise, A.J.; Harra, L.K.; Matthews, S.A.; Arridge, C.S.; Achilleos, N. Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn. J. Geophys. Res. Space Phys. 2015, 120, 1566–1588. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, B.; Wang, Y.; Shen, C.; Liu, S.; Wang, J.; Pan, Z.; Li, H.; Liu, R. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth. Astrophys. J. 2017, 845, 117. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Mäkelä, P.; Xie, H.; Akiyama, S.; Yashiro, S. CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. Space Phys. 2009, 114, A00A22. [Google Scholar] [CrossRef]
- Sieyra, M.V.; Cécere, M.; Cremades, H.; Iglesias, F.A.; Sahade, A.; Mierla, M.; Stenborg, G.; Costa, A.; West, M.J.; D’Huys, E. Analysis of Large Deflections of Prominence–CME Events during the Rising Phase of Solar Cycle 24. Sol. Phys. 2020, 295, 126. [Google Scholar] [CrossRef]
- Kilpua, E.K.J.; Pomoell, J.; Vourlidas, A.; Vainio, R.; Luhmann, J.; Li, Y.; Schroeder, P.; Galvin, A.B.; Simunac, K. STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys. 2009, 27, 4491–4503. [Google Scholar] [CrossRef] [Green Version]
- Rodkin, D.; Kaportseva, K.B.; Lukashenko, A.T.; Veselovsky, I.S.; Slemzin, V.A.; Shugay, Y.S. Large-Scale and Small-Scale Solar Wind Structures Formed during Interaction of Streams in the Heliosphere. Cosm. Res. 2019, 57, 18–28. [Google Scholar] [CrossRef]
- Werner, A.L.E.; Yordanova, E.; Dimmock, A.P.; Temmer, M. Modeling the Multiple CME Interaction Event on 6–9 September 2017 with WSA-ENLIL+Cone. Space Weather. 2019, 17, 357–369. [Google Scholar] [CrossRef]
- Scolini, C.; Chané, E.; Temmer, M.; Kilpua, E.K.J.; Dissauer, K.; Veronig, A.M.; Palmerio, E.; Pomoell, J.; Dumbović, M.; Guo, J.; et al. CME–CME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in 2017 Early September. Astrophys. J. Suppl. Ser. 2020, 247, 21. [Google Scholar] [CrossRef]
- Slemzin, V.; Goryaev, F.; Rodkin, D. Formation of Coronal Mass Ejection and Posteruption Flow of Solar Wind on 2010 August 18 Event. Astrophys. J. 2022, 929, 146. [Google Scholar] [CrossRef]
Number of Events for Year | 2015 | 2016 | 2017 |
---|---|---|---|
CACTus (initial) | 1730 | 922 | 580 |
Step 1 | 1505 | 854 | 555 |
Ratio 1, % | 87 | 93 | 96 |
Step 2 | 341 | 188 | 134 |
Ratio 2, % | 20 | 20 | 23 |
Step 3 | 144 | 42 | 30 |
Ratio 3, % | 8 | 5 | 5 |
Step 4 | 82 | 22 | 14 |
Ratio 4, % | 5 | 2 | 2 |
Number of Events | 2015 | 2016 | 2017 |
---|---|---|---|
predicted events | 82 | 22 | 14 |
hit | 38 (39.5%) | 7 (14%) | 8 (20%) |
miss | 14 (14.5%) | 29 (57%) | 26 (65%) |
false alarm | 44 (46%) | 15 (29%) | 6 (15%) |
Year | 2015 | 2016 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|---|
dTc, hours | <12 | <24 | <36 | <12 | <24 | <36 | <12 | <24 | <36 |
SMDC, % | 42 | 61 | 83 | 43 | 57 | 71 | 40 | 40 | 60 |
Scoreboard, % | 52 | 81 | 95 | 29 | 64 | 71 | 40 | 60 | 100 |
dVc, km s−1 | <40 | <80 | <120 | <160 |
---|---|---|---|---|
2015 | 19 | 51 | 68 | 81 |
2016 | 29 | 43 | 86 | 86 |
2017 | 0 | 0 | 40 | 80 |
# | Tstart_ICME, UT (R&C) | TR0, UT (γ = 0.2 × 10−7 km−1) | Tdimm,UT (Solar Demon) | Idimm × 105, DN s−1 | Lat, deg | Lon, deg |
---|---|---|---|---|---|---|
1 | 2013-03-17 15:00 | 2013-03-15 15:48 | 2013-03-15 06:04 | −1.26 | 8 | −8 |
2 | 2013-04-14 17:00 | 2013-04-10 04:30 | 2013-04-11 07:00 | −10.43 | 6 | −16 |
3 | 2013-07-13 05:00 | 2013-07-09 03:19 | 2013-07-09 14:08 | −6.97 | 17 | −10 |
4 | 2013-08-23 20:00 | 2013-08-19 20:22 | 2013-08-21 03:22 | −7.37 | −16 | −10 |
5 | 2013-10-02 23:00 | 2013-09-29 04:13 | 2013-09-29 21:22 | −6.70 | 14 | 33 |
6 | 2014-02-16 05:00 | 2014-02-11 06:46 | 2014-02-12 04:24 | −2.87 | −13 | 7 |
7 | 2014-02-17 03:00 | 2014-02-12 12:55 | 2014-02-12 12:04 | −8.42 | 5 | 25 |
8 | 2014-02-21 02:00 | 2014-02-17 18:22 | 2014-02-18 00:44 | −7.89 | −25 | −31 |
9 | 2014-04-21 07:00 | 2014-04-18 10:45 | 2014-04-18 12:46 | −6.51 | −21 | 35 |
10 | 2014-09-12 22:00 | 2014-09-10 16:13 | 2014-09-10 17:26 | −12.94 | 16 | −3 |
11 | 2015-03-17 13:00 | 2015-03-14 21:28 | 2015-03-15 00:48 | −8.53 | −22 | 33 |
12 | 2015-04-10 13:00 | 2015-04-05 07:39 | 2015-04-06 18:42 | −4.93 | −15 | −12 |
13 | 2015-06-23 02:00 | 2015-06-20 07:42 | 2015-06-21 01:40 | −10.29 | 17 | −16 |
14 | 2015-06-25 10:00 | 2015-06-22 12:04 | 2015-06-22 18:06 | −5.48 | 17 | 7 |
15 | 2015-08-15 21:00 | 2015-08-12 03:40 | 2015-08-12 14:08 | −2.63 | −20 | 31 |
16 | 2015-11-07 06:00 | 2015-11-04 05:11 | 2015-11-04 13:42 | −6.55 | 10 | 2 |
17 | 2015-12-20 03:00 | 2015-12-15 09:49 | 2015-12-16 08:04 | −8.87 | −12 | 1 |
# | TR20, UT | VR20, km s−1 | T20_CDAW, UT | V20_CDAW km s−1 | T20_CACTus, UT | V20_CACTus km s−1 |
---|---|---|---|---|---|---|
1 | 2013-03-15 01:20 | 811 | 2013-03-15 10:06 | 1161 | 2013-03-15 10:14 | 1016 |
2 | 2013-04-10 22:30 | 429 | 2013-04-11 10:59 | 819 | 2013-04-11 11:25 | 809 |
3 | 2013-07-09 18:44 | 502 | 2013-07-09 22:05 | 290 | 2013-07-09 23:17 | 392 |
4 | 2013-08-20 12:32 | 478 | 2013-08-21 13:14 | 321 | 2013-08-21 11:01 | 513 |
5 | 2013-09-29 18:45 | 532 | 2013-09-30 00:53 | 1164 | 2013-09-30 02:26 | 767 |
6 | 2014-02-12 02:43 | 388 | 2014-02-12 14:17 | 494 | 2014-02-12 13:13 | 441 |
7 | 2014-02-13 07:08 | 424 | 2014-02-12 19:00 | 492 | 2014-02-12 17:08 | 653 |
8 | 2014-02-18 05:37 | 687 | 2014-02-18 05:34 | 712 | 2014-02-18 04:56 | 926 |
9 | 2014-04-18 19:55 | 844 | 2014-04-18 15:59 | 1245 | 2014-04-18 16:16 | 1080 |
10 | 2014-09-10 22:12 | 1290 | 2014-09-10 20:26 | 1119 | 2014-09-10 20:54 | 994 |
11 | 2015-03-15 05:44 | 935 | 2015-03-15 06:06 | 682 | 2015-03-15 05:20 | 982 |
12 | 2015-04-06 05:39 | 351 | 2015-04-07 02:50 | 450 | 2015-04-07 01:55 | 474 |
13 | 2015-06-20 17:51 | 761 | 2015-06-21 04:51 | 1434 | 2015-06-21 05:12 | 1190 |
14 | 2015-06-22 21:42 | 804 | 2015-06-22 21:09 | 1147 | 2015-06-22 21:44 | 982 |
15 | 2015-08-12 18:39 | 516 | 2015-08-12 19:35 | 687 | 2015-08-12 20:09 | 624 |
16 | 2015-11-04 14:48 | 803 | 2015-11-04 20:09 | 701 | 2015-11-04 19:08 | 652 |
17 | 2015-12-16 05:02 | 402 | 2015-12-16 14:56 | 487 | 2015-12-16 13:43 | 716 |
Data Parameter | CACTus | CDAW | Scoreboard | Basic SMDC (2015) | ||||
---|---|---|---|---|---|---|---|---|
Value | SD | Value | SD | Value | SD | Value | SD | |
ME(dT), h | −0.09 | 12.4 | 1.6 | 14.1 | −3.67 | 17.1 | 2.7 | 26.8 |
MAE(dT), h | 8.8 | 8.4 | 10.7 | 8.9 | 12.9 | - | 20.8 | 25.6 |
ME(dV), km s−1 | 0.94 | 47.2 | 0.35 | 41.8 | - | - | 6.2 | 101.6 |
MAE(dV), km s−1 | 37.5 | 27.0 | 34.2 | 22.5 | - | - | 82.3 | 100.1 |
Confidence Intervals | dTc, Hours | dVc, km s−1 | ||
---|---|---|---|---|
<12 | <24 | <40 | <80 | |
CACTus | 59 | 94 | 65 | 94 |
CDAW | 65 | 94 | 65 | 88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shugay, Y.; Kalegaev, V.; Kaportseva, K.; Slemzin, V.; Rodkin, D.; Eremeev, V. Modeling of Solar Wind Disturbances Associated with Coronal Mass Ejections and Verification of the Forecast Results. Universe 2022, 8, 565. https://doi.org/10.3390/universe8110565
Shugay Y, Kalegaev V, Kaportseva K, Slemzin V, Rodkin D, Eremeev V. Modeling of Solar Wind Disturbances Associated with Coronal Mass Ejections and Verification of the Forecast Results. Universe. 2022; 8(11):565. https://doi.org/10.3390/universe8110565
Chicago/Turabian StyleShugay, Yulia, Vladimir Kalegaev, Ksenia Kaportseva, Vladimir Slemzin, Denis Rodkin, and Valeriy Eremeev. 2022. "Modeling of Solar Wind Disturbances Associated with Coronal Mass Ejections and Verification of the Forecast Results" Universe 8, no. 11: 565. https://doi.org/10.3390/universe8110565
APA StyleShugay, Y., Kalegaev, V., Kaportseva, K., Slemzin, V., Rodkin, D., & Eremeev, V. (2022). Modeling of Solar Wind Disturbances Associated with Coronal Mass Ejections and Verification of the Forecast Results. Universe, 8(11), 565. https://doi.org/10.3390/universe8110565