Vaidya and Generalized Vaidya Solutions by Gravitational Decoupling
Abstract
:1. Introduction
2. The Perfect Fluid Case
3. Vaidya Solution by Gravitational Decoupling
4. Generalized Vaidya Spacetime by Gravitational Decoupling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Here, we only show that these solutions do not generate new singularities except for the singular point at . However, as we pointed out earlier, might be a regular point in the case . |
References
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration]. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar]
- Ruffini, R.; Wheeler, J.A. Introducing the black hole. Phys. Today 1971, 24, 30. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Soft Hair on Black Holes. Phys. Rev. Lett. 2016, 116, 231301. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J. Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids. Phys. Rev. 2017, D95, 104019. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J. Decoupling gravitational sources in general relativity: The extended case. Phys. Lett. B 2019, 788, 213. [Google Scholar] [CrossRef]
- Contreras, E.; Ovalle, J.; Casadio, R. Gravitational decoupling for axially symmetric systems and rotating black holes. Phys. Rev. D 2021, 103, 044020. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. Black holes in scalar-tensor gravity. Phys. Rev. Lett. 2012, 108, 081103. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.; Charmousis, C. Dressing a black hole with a time-dependent Galileon. J. High Energy Phys. 2014, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J.; Casadio, R.; Contreras, E.; Sotomayor, A. Hairy black holes by gravitational decoupling. Phys. Dark Universe 2021, 31, 100744. [Google Scholar] [CrossRef]
- Ovalle, J.; Casadio, R.; Rocha, R.D.; Sotomayor, A.; Stuchlik, Z. Black holes by gravitational decoupling. Eur. Phys. J. C 2018, 78, 960. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Ahmed, S. Gravitationally decoupled non-static anisotropic spherical solutions. Mod. Phys. Lett. A 2021, 36, 2150145. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Wang, A.; Wu, Y. Generalized Vaidya solutions. Gen Relativ. Gravit. 1999, 31, 107. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, P.C. Nonstatic solutions of Einstein’s field equations for spheres of fluids radiating energy. Phys. Rev. 1951, 83, 10. [Google Scholar] [CrossRef]
- Papapetrou, A. A Random Walk in Relativity and Cosmology; Wiley Eastern: New Delhi, India, 1985. [Google Scholar]
- Santos, N.O. Non-adiabatic radiating collapse. Mon. Not. R. Astron. Soc. 1985, 216, 403. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Prisco, A.D.; Ospino, J. Some analytical models of radiating collapsing spheres. Phys. Rev. D 2006, 74, 044001. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Denmat, G.L.; Santos, N.O. Dynamical instability and the expansion-free condition. Gen. Relativ. Gravit. 2012, 44, 1143. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, I.H.; Joshi, P.S. On the nature of naked singularities in Vaidya spacetimes Class. Quantum Grav. 1989, 6, 1599. [Google Scholar] [CrossRef]
- Reddy, K.P.; Govender, M.; Maharaj, S.D. Impact of anisotropic stresses during dissipative gravitational collapse. Gen. Relativ. Gravit. 2015, 47, 35. [Google Scholar] [CrossRef]
- Thirukkanesh, S.; Moopanar, S.; Govender, M. The final outcome of dissipative collapse in the presence of Λ. Pramana J. Phys. 2012, 79, 223–232. [Google Scholar] [CrossRef]
- Thirukkanesh, S.; Govender, M. The role of the electromagnetic field in dissipative collapse. Int. J. Mod. Phys. D 2013, 22, 1350087. [Google Scholar] [CrossRef]
- Lindquist, R.W.; Schwartz, R.A.; Misner, C.W. Vaidya’s Radiating Schwarzschild Metric. Phys. Rev. B 1965, 137, 1364. [Google Scholar] [CrossRef]
- Husain, V. Exact solutions for null fluid collapse. Phys. Rev. D 1996, 53, R1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, E.N.; Krisch, J.P. Radiation and string atmosphere for relativistic stars. Phys. Rev. D 1998, 57, 5945. [Google Scholar] [CrossRef] [Green Version]
- Glass, E.N.; Krisch, J.P. Classical and Quantum Gravity Two-fluid atmosphere for relativistic stars. Class. Quant. Grav. 1999, 16, 1175. [Google Scholar] [CrossRef]
- Maharaj, S.D.; Govender, G.; Govender, M. Radiating stars with generalised Vaidya atmospheres. Gen. Relativ. Gravit. 2012, 44, 1089. [Google Scholar] [CrossRef] [Green Version]
- Maharaj, S.D.; Brassel, B.P. Junction conditions for composite matter in higher dimensions. Class. Quantum Grav. 2021, 38, 195006. [Google Scholar] [CrossRef]
- Mkenyeleye, M.D.; Goswami, R.; Maharaj, S.D. Vaidya and generalized Vaidya solutions by gravitational de- coupling. Phys. Rev. D 2015, 92, 024041. [Google Scholar] [CrossRef] [Green Version]
- Mkenyeleye, M.D.; Goswami, R.; Maharaj, S.D. Thermodynamics of gravity favours Weak Censorship Conjecture. Phys. Rev. D 2014, 90, 064034. [Google Scholar] [CrossRef]
- Vertogradov, V. The eternal naked singularity formation in the case of gravitational collapse of generalized Vaidya spacetime. Int. J. Mod. Phys. A 2018, 33, 1850102. [Google Scholar] [CrossRef]
- Vertogradov, V. Naked singularity formation in generalized Vaidya space-time. Grav. Cosmol. 2016, 22, 220–223. [Google Scholar] [CrossRef]
- Vertogradov, V. Gravitational collapse of Vaidya spacetime. Int. J. Mod. Phys. Conf. Ser. 2016, 41, 1660124. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.; Joshi, P.S. Gravitational collapse of baryonic and dark matter. Arab. J. Math. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Rudra, P.; Biswas, R.; Debnath, U. Gravitational collapse in generalized Vaidya space-time for Lovelock gravity theory. Astrophys. Space Sci. 2011, 335, 505. [Google Scholar] [CrossRef]
- Heydarzade, Y.; Darabi, F. Surrounded Vaidya solution by cosmological fields. Eur. Phys. J. C 2018, 78, 582. [Google Scholar] [CrossRef]
- Heydarzade, Y.; Darabi, F. Surrounded Bonnor–Vaidya solution by cosmological fields. Eur. Phys. J. C 2018, 78, 1004. [Google Scholar] [CrossRef]
- Akutsu, T.; Ando, M.; Arai, K.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Aso, Y.; Bae, S.; et al. An arm length stabilization system for KAGRA and future gravitational-wave detectors. Class. Quantum Grav. 2020, 37, 055005. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, A.V.; Maharaj, S.D. Embedding with Vaidya geometry. Eur. Phys. J. C 2020, 80, 648. [Google Scholar] [CrossRef]
- Faraoni, V.; Giusti, A.; Fahim, B.H. Vaidya geometries and scalar fields with null gradients. Eur. Phys. J. C 2021, 81, 232. [Google Scholar] [CrossRef] [PubMed]
- Brassel, B.P.; Maharaj, S.D.; Goswami, R. Charged radiation collapse in Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 2022, 82, 359. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ramos, A.; Arias, C.; Avalos, R.; Contreras, E. Geodesic motion around hairy black holes. Annals Phys. 2021, 431, 168557. [Google Scholar] [CrossRef]
- Cavalcanti, R.T.; Alves, K.d.S.; da Silva, J.M.H. Near horizon thermodynamics of hairy black holes from gravitational decoupling. Universe 2022, 8, 363. [Google Scholar] [CrossRef]
- Visser, M. Dirty black holes: Thermodynamics and horizon structure. Phys. Rev. D 1992, 46, 2445–2451. [Google Scholar] [CrossRef] [Green Version]
- Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vertogradov, V.; Misyura, M. Vaidya and Generalized Vaidya Solutions by Gravitational Decoupling. Universe 2022, 8, 567. https://doi.org/10.3390/universe8110567
Vertogradov V, Misyura M. Vaidya and Generalized Vaidya Solutions by Gravitational Decoupling. Universe. 2022; 8(11):567. https://doi.org/10.3390/universe8110567
Chicago/Turabian StyleVertogradov, Vitalii, and Maxim Misyura. 2022. "Vaidya and Generalized Vaidya Solutions by Gravitational Decoupling" Universe 8, no. 11: 567. https://doi.org/10.3390/universe8110567
APA StyleVertogradov, V., & Misyura, M. (2022). Vaidya and Generalized Vaidya Solutions by Gravitational Decoupling. Universe, 8(11), 567. https://doi.org/10.3390/universe8110567