Frame-Dragging in Extrasolar Circumbinary Planetary Systems
Abstract
:1. Introduction
2. The Gravitomagnetic Precessions Due to a Matter Ring Current
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | For a recent overview, see, e.g., [1] and references therein. |
2 | |
3 |
References
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Einstein, A. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte Preußischen Akad. Wiss. 1915, 47, 831–839. [Google Scholar]
- Lense, J.; Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 156–163. [Google Scholar]
- Brumberg, V.A. Essential Relativistic Celestial Mechanics; Adam Hilger: Bristol, UK, 1991. [Google Scholar]
- Soffel, M.H.; Han, W.B. Applied General Relativity; Astronomy and Astrophysics Library; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Cattaneo, C. General relativity: Relative standard mass, momentum, energy and gravitational field in a general system of reference. Il Nuovo Cimento 1958, 10, 318–337. [Google Scholar] [CrossRef]
- Thorne, K.S.; MacDonald, D.A.; Price, R.H. (Eds.) Black Holes: The Membrane Paradigm; Yale University Press: New Haven, CT, USA, 1986. [Google Scholar]
- Thorne, K.S. Black Holes: The Membrane Viewpoint. In Highlights of Modern Astrophysics: Concepts and Controversies; Shapiro, S.L., Teukolsky, S.A., Salpeter, E.E., Eds.; Wiley: New, York, NY, USA, 1986; pp. 103–161. [Google Scholar]
- Thorne, K.S. Gravitomagnetism, jets in quasars, and the Stanford Gyroscope Experiment. In Near Zero: New Frontiers of Physics; Fairbank, J.D., Deaver, B.S.J., Everitt, C.W.F., Michelson, P.F., Eds.; Freeman: New York, NY, USA, 1988; pp. 573–586. [Google Scholar]
- Harris, E.G. Analogy between general relativity and electromagnetism for slowly moving particles in weak gravitational fields. Am. J. Phys. 1991, 59, 421–425. [Google Scholar] [CrossRef]
- Jantzen, R.T.; Carini, P.; Bini, D. The many faces of gravitoelectromagnetism. Ann. Phys. 1992, 215, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Gravitoelectromagnetism. In Reference Frames and Gravitomagnetism, Proceedings of the XXIII Spanish Relativity Meeting, Valladolid, Spain, 6–9 September 2001; Pascual-Sánchez, J.F., Floría, L., San Miguel, A., Vicente, F., Eds.; World Scientific: Singapore, 2001; pp. 121–132. [Google Scholar] [CrossRef] [Green Version]
- Rindler, W. Relativity: Special, General, and Cosmological; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Mashhoon, B. Gravitoelectromagnetism: A Brief Review. In The Measurement of Gravitomagnetism: A Challenging Enterprise; Iorio, L., Ed.; Nova Science: New York, NY, USA, 2007; pp. 29–39. [Google Scholar]
- Costa, L.F.O.; Herdeiro, C.A.R. Gravitoelectromagnetic analogy based on tidal tensors. Phys. Rev. D 2008, 78, 024021. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Natário, J. Gravito-electromagnetic analogies. Gen. Relativ. Gravit. 2014, 46, 1792. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Natário, J. Frame-Dragging: Meaning, Myths, and Misconceptions. Universe 2021, 7, 388. [Google Scholar] [CrossRef]
- Ruggiero, M.L. A Note on the Gravitoelectromagnetic Analogy. Universe 2021, 7, 451. [Google Scholar] [CrossRef]
- Barker, B.M.; O’Connell, R.F. Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 1975, 12, 329–335. [Google Scholar] [CrossRef]
- Damour, T.; Schäfer, G. Higher-order relativistic periastron advances and binary pulsars. Il Nuovo Cimento B 1988, 101, 127–176. [Google Scholar] [CrossRef]
- Iorio, L. Post-Keplerian perturbations of the orbital time shift in binary pulsars: An analytical formulation with applications to the galactic center. Eur. Phys. J. C 2017, 77, 439. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. General Relativity measurements in the field of Earth with laser-ranged satellites: State of the art and perspectives. Universe 2019, 5, 141. [Google Scholar] [CrossRef] [Green Version]
- Le Verrier, U.J. Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète. Comptes Rendus Hebd. Séances l’Académie Sci. 1959, 49, 379–383. [Google Scholar]
- Renzetti, G. History of the attempts to measure orbital frame–dragging with artificial satellites. Cent. Eur. J. Phys. 2013, 11, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Everitt, C.W.F.; Debra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef] [Green Version]
- Haghighipour, N. (Ed.) Planets in Binary Star Systems. In Astrophysics and Space Science Library; Springer: Berlin, Germany, 2010; Volume 366. [Google Scholar] [CrossRef] [Green Version]
- Thebault, P.; Haghighipour, N. Planet Formation in Binaries. In Planetary Exploration and Science: Recent Results and Advances; Jin, S., Haghighipour, N., Ip, W., Eds.; Springer: Heidelberg, Germany, 2015; pp. 309–340. [Google Scholar] [CrossRef] [Green Version]
- Thorsett, S.E.; Arzoumanian, Z.; Taylor, J.H. PSR B1620-26—A binary radio pulsar with a planetary companion? Astrophys. J. Lett. 1993, 412, L33–L36. [Google Scholar] [CrossRef]
- Correia, A.C.M.; Udry, S.; Mayor, M.; Laskar, J.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N.C. The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet? Astron. Astrophys. 2005, 440, 751–758. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, S.L.; Kim, C.H.; Koch, R.H.; Lee, C.U.; Kim, H.I.; Park, J.H. The sdB+M Eclipsing System HW Virginis and its Circumbinary Planets. Astromomical J. 2009, 137, 3181–3190. [Google Scholar] [CrossRef]
- Qian, S.B.; Liao, W.P.; Zhu, L.Y.; Dai, Z.B. Detection of a Giant Extrasolar Planet Orbiting the Eclipsing Polar DP Leo. Astrophys. J. Lett. 2010, 708, L66–L68. [Google Scholar] [CrossRef] [Green Version]
- Beuermann, K.; Hessman, F.V.; Dreizler, S.; Marsh, T.R.; Parsons, S.G.; Winget, D.E.; Miller, G.F.; Schreiber, M.R.; Kley, W.; Dhillon, V.S.; et al. Two planets orbiting the recently formed post-common envelope binary NN Serpentis. Astron. Astrophys. 2010, 521, L60. [Google Scholar] [CrossRef] [Green Version]
- Doyle, L.R.; Carter, J.A.; Fabrycky, D.C.; Slawson, R.W.; Howell, S.B.; Winn, J.N.; Orosz, J.A.; Prša, A.; Welsh, W.F.; Quinn, S.N.; et al. Kepler-16: A Transiting Circumbinary Planet. Science 2011, 333, 1602–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orosz, J.A.; Welsh, W.F.; Carter, J.A.; Brugamyer, E.; Buchhave, L.A.; Cochran, W.D.; Endl, M.; Ford, E.B.; MacQueen, P.; Short, D.R.; et al. The Neptune-sized Circumbinary Planet Kepler-38b. Astrophys. J. 2012, 758, 87. [Google Scholar] [CrossRef]
- Orosz, J.A.; Welsh, W.F.; Carter, J.A.; Fabrycky, D.C.; Cochran, W.D.; Endl, M.; Ford, E.B.; Haghighipour, N.; MacQueen, P.J.; Mazeh, T.; et al. Kepler-47: A Transiting Circumbinary Multiplanet System. Science 2012, 337, 1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, S.B.; Zhu, L.Y.; Dai, Z.B.; Fernández-Lajús, E.; Xiang, F.Y.; He, J.J. Circumbinary Planets Orbiting the Rapidly Pulsating Subdwarf B-type Binary NY Vir. Astrophys. J. Lett. 2012, 745, L23. [Google Scholar] [CrossRef]
- Qian, S.B.; Liu, L.; Zhu, L.Y.; Dai, Z.B.; Fernández Lajús, E.; Baume, G.L. A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae. Mon. Not. R. Astron. Soc. 2012, 422, L24–L27. [Google Scholar] [CrossRef] [Green Version]
- Welsh, W.F.; Orosz, J.A.; Carter, J.A.; Fabrycky, D.C.; Ford, E.B.; Lissauer, J.J.; Prša, A.; Quinn, S.N.; Ragozzine, D.; Short, D.R.; et al. Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 2012, 481, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Schwamb, M.E.; Orosz, J.A.; Carter, J.A.; Welsh, W.F.; Fischer, D.A.; Torres, G.; Howard, A.W.; Crepp, J.R.; Keel, W.C.; Lintott, C.J.; et al. Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System. Astrophys. J. 2013, 768, 127. [Google Scholar] [CrossRef] [Green Version]
- Kraus, A.L.; Ireland, M.J.; Cieza, L.A.; Hinkley, S.; Dupuy, T.J.; Bowler, B.P.; Liu, M.C. Three Wide Planetary-mass Companions to FW Tau, ROXs 12, and ROXs 42B. Astrophys. J. 2014, 781, 20. [Google Scholar] [CrossRef]
- Kostov, V.B.; McCullough, P.R.; Carter, J.A.; Deleuil, M.; Díaz, R.F.; Fabrycky, D.C.; Hébrard, G.; Hinse, T.C.; Mazeh, T.; Orosz, J.A.; et al. Kepler-413b: A Slightly Misaligned, Neptune-size Transiting Circumbinary Planet. Astrophys. J. 2014, 784, 14. [Google Scholar] [CrossRef]
- Welsh, W.F.; Orosz, J.A.; Short, D.R.; Cochran, W.D.; Endl, M.; Brugamyer, E.; Haghighipour, N.; Buchhave, L.A.; Doyle, L.R.; Fabrycky, D.C.; et al. Kepler 453 b—The 10th Kepler Transiting Circumbinary Planet. Astrophys. J. 2015, 809, 26. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.P.; Rhie, S.H.; Udalski, A.; Gould, A.; Tsapras, Y.; Kubas, D.; Bond, I.A.; Greenhill, J.; Cassan, A.; Rattenbury, N.J.; et al. The First Circumbinary Planet Found by Microlensing: OGLE-2007-BLG-349L(AB)c. Astron. J. 2016, 152, 125. [Google Scholar] [CrossRef] [Green Version]
- Kostov, V.B.; Orosz, J.A.; Welsh, W.F.; Doyle, L.R.; Fabrycky, D.C.; Haghighipour, N.; Quarles, B.; Short, D.R.; Cochran, W.D.; Endl, M.; et al. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet. Astrophys. J. 2016, 827, 86. [Google Scholar] [CrossRef] [Green Version]
- Getley, A.K.; Carter, B.; King, R.; O’Toole, S. Evidence for a planetary mass third body orbiting the binary star KIC 5095269. Mon. Not. R. Astron. Soc. 2017, 468, 2932–2937. [Google Scholar] [CrossRef]
- Jain, C.; Paul, B.; Sharma, R.; Jaleel, A.; Dutta, A. Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658-298. Mon. Not. R. Astron. Soc. 2017, 468, L118–L122. [Google Scholar] [CrossRef] [Green Version]
- Asensio-Torres, R.; Janson, M.; Bonavita, M.; Desidera, S.; Thalmann, C.; Kuzuhara, M.; Henning, T.; Marzari, F.; Meyer, M.R.; Calissendorff, P.; et al. SPOTS: The Search for Planets Orbiting Two Stars. III. Complete sample and statistical analysis. Astron. Astrophys. 2018, 619, A43. [Google Scholar] [CrossRef]
- Kostov, V.B.; Powell, B.P.; Orosz, J.A.; Welsh, W.F.; Cochran, W.; Collins, K.A.; Endl, M.; Hellier, C.; Latham, D.W.; MacQueen, P.; et al. TIC 172900988: A Transiting Circumbinary Planet Detected in One Sector of TESS Data. Astron. J. 2021, 162, 234. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Petterson, J.A. The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. Astrophys. J. 1975, 195, L65–L67. [Google Scholar] [CrossRef]
- Stella, L.; Vietri, M. Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-ray Binaries. Astrophys. J. Lett. 1998, 492, L59–L62. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. “Golden Oldie”: Gravitational Collapse: The Role of General Relativity. Gen. Relativ. Gravit. 2002, 34, 1141–1165. [Google Scholar] [CrossRef]
- Schäfer, G. Gravitomagnetism in Physics and Astrophysics. Space Sci. Rev. 2009, 148, 37–52. [Google Scholar] [CrossRef]
- Stella, L.; Possenti, A. Lense-Thirring Precession in the Astrophysical Context. Space Sci. Rev. 2009, 148, 105–121. [Google Scholar] [CrossRef]
- Welsh, W.F.; Orosz, J.A.; Carter, J.A.; Fabrycky, D.C. Recent Kepler Results On Circumbinary Planets. In Formation, Detection, and Characterization of Extrasolar Habitable Planets; Haghighipour, N., Ed.; Cambridge University Press: Cambridge, UK, 2014; Volume 293, pp. 125–132. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, C.; Kocherlakota, P.; Patil, M.; Bhattacharyya, S.; Joshi, P.S.; Królak, A. Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields. Phys. Rev. D 2017, 95, 084024. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, C.; Bhattacharyya, S. Does the gravitomagnetic monopole exist? A clue from a black hole X-ray binary. Phys. Rev. D 2018, 98, 043021. [Google Scholar] [CrossRef] [Green Version]
- Pijpers, F.P. Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 1998, 297, L76–L80. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Are we far from testing general relativity with the transitting extrasolar planet HD 209458b “Osiris”? New Astron. 2006, 11, 490–494. [Google Scholar] [CrossRef] [Green Version]
- Jordán, A.; Bakos, G.Á. Observability of the General Relativistic Precession of Periastra in Exoplanets. Astrophys. J. 2008, 685, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Pál, A.; Kocsis, B. Periastron precession measurements in transiting extrasolar planetary systems at the level of general relativity. Mon. Not. R. Astron. Soc. 2008, 389, 191–198. [Google Scholar] [CrossRef]
- Jordán, A.; Bakos, G.Á. Observability of the General Relativistic Precession of Periastra in Exoplanets. In Proceedings of the IAU Symposium, Rio de Janeiro, Brasil, 3–7 August 2009; Volume 253, pp. 492–495. [Google Scholar] [CrossRef] [Green Version]
- Ragozzine, D.; Wolf, A.S. Probing the Interiors of very Hot Jupiters Using Transit Light Curves. Astrophys. J. 2009, 698, 1778–1794. [Google Scholar] [CrossRef] [Green Version]
- Damiani, C.; Lanza, A.F. Prospecting transit duration variations in extrasolar planetary systems. Astron. Astrophys. 2011, 535, A116. [Google Scholar] [CrossRef]
- Fukui, A.; Narita, N.; Tristram, P.J.; Sumi, T.; Abe, F.; Itow, Y.; Sullivan, D.J.; Bond, I.A.; Hirano, T.; Tamura, M.; et al. Measurements of Transit Timing Variations for WASP-5b. Publ. Astron. Soc. Jpn. 2011, 63, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Classical and relativistic node precessional effects in WASP-33b and perspectives for detecting them. Astrophys. Space Sci. 2011, 331, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Classical and relativistic long-term time variations of some observables for transiting exoplanets. Mon. Not. R. Astron. Soc. 2011, 411, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Eibe, M.T.; Cuesta, L.; Ullán, A.; Pérez-Verde, A.; Navas, J. Analysis of variations in transit time and transit duration in WASP-3. Evidence of secular perturbations reconsidered. Mon. Not. R. Astron. Soc. 2012, 423, 1381–1389. [Google Scholar] [CrossRef] [Green Version]
- Kane, S.R.; Horner, J.; von Braun, K. Cyclic Transit Probabilities of Long-period Eccentric Planets due to Periastron Precession. Astrophys. J. 2012, 757, 105. [Google Scholar] [CrossRef] [Green Version]
- Li, L.S. Parameterized post-Newtonian orbital effects in extrasolar planets. Astrophys. Space Sci. 2012, 341, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.S.; Xie, Y. Parametrized post-Newtonian secular transit timing variations for exoplanets. Res. Astron. Astrophys. 2013, 13, 1231–1239. [Google Scholar] [CrossRef]
- Blanchet, L.; Hébrard, G.; Larrouturou, F. Detecting the general relativistic orbital precession of the exoplanet HD 80606b. Astron. Astrophys. 2019, 628, A80. [Google Scholar] [CrossRef] [Green Version]
- Antoniciello, G.; Borsato, L.; Lacedelli, G.; Nascimbeni, V.; Barragán, O.; Claudi, R. Detecting general relativistic orbital precession in transiting hot Jupiters. Mon. Not. R. Astron. Soc. 2021, 505, 1567–1574. [Google Scholar] [CrossRef]
- Gou, X.; Pan, X.; Wang, L. General Relativity Testing in Exoplanetary Systems. IOP Conf. Ser. Earth Environ. Sci. 2021, 658, 012051. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, L. Frame-Dragging in Extrasolar Circumbinary Planetary Systems. Universe 2022, 8, 546. https://doi.org/10.3390/universe8100546
Iorio L. Frame-Dragging in Extrasolar Circumbinary Planetary Systems. Universe. 2022; 8(10):546. https://doi.org/10.3390/universe8100546
Chicago/Turabian StyleIorio, Lorenzo. 2022. "Frame-Dragging in Extrasolar Circumbinary Planetary Systems" Universe 8, no. 10: 546. https://doi.org/10.3390/universe8100546
APA StyleIorio, L. (2022). Frame-Dragging in Extrasolar Circumbinary Planetary Systems. Universe, 8(10), 546. https://doi.org/10.3390/universe8100546