Dynamical Signature: Complex Manifolds, Gauge Fields and Non-Flat Tangent Space
Abstract
:1. Introduction
2. Complex Metrics for a Complex Manifold
3. Einstein-Cartan Action for the Complex Metric in the Complex Manifold
4. Complexification of the Manifold through Gauge Fields
5. Gauge Symmetry for the Vierbein Field
6. Non-Flat Tangential Space Construction
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Complex Metric through Complex Vierbein
Appendix B. Induced Part of the Action
1 | |
2 | We note here, that due to the rotation of the manifold’s coordinates, the direction of the rotation is important. Namely, taking (conjugated) definition of the complex coordinate, we will have to change the integration limits as and that will lead to the invariance of the Equation (21) expression with respect to the definition of the z coordinate. |
3 | This statement can be understood in terms of any evolution equations, the equations will have the same form for any redefined x coordinate. |
4 | We note that there is a difference between gauge actions written in terms of M and A fields. |
5 | An another variant of the non-flat tangent space is simply define with M belonging to some extended symmetry group with changing signature, see [93]. |
6 | The twistor space, definitely, as well describes manifolds endowed with metrics with different signatures, but it is not clear if it can be formulated as a dynamical model with simultaneous inclusion of metrics of different signatures. |
7 | Following the analogy with the high energy scattering approach, we can consider the Equation (A10) action with an additional induced term as describing a “scattering” between two boundary fields with boundaries defined at the edges of time. |
References
- Misner, C.W.; Wheeler, J. Classical Physics as Geometry. Ann. Phys. 1957, 2, 525. [Google Scholar] [CrossRef]
- Wheeler, J. Geometrodynamics; Academic Press: New York, NY, USA, 1962. [Google Scholar]
- Hawking, S.W. Space-Time Foam. Nucl. Phys. B 1978, 144, 349–362. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W. Wave Function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hartle, J.B. Real Tunneling Geometries and the Large Scale Topology of the Universe. Phys. Rev. D 1990, 42, 2458–2468. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Kinks and topology change. Phys. Rev. Lett. 1992, 69, 1719–1721. [Google Scholar] [CrossRef]
- Gibbons, G.; Hawking, S.W. Selection Rules for Topology Change. Comm. Math. Phys. 1992, 148, 345. [Google Scholar] [CrossRef]
- Sakharov, A.D. Cosmological Transitions With a Change in Metric Signature. Sov. Phys. JETP 1984, 60, 214–218. [Google Scholar]
- Anderson, A.; DeWitt, B.S. Does the Topology of Space Fluctuate? Found. Phys. 1986, 16, 91–105. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schleich, K.; Witt, D.M. Topological censorship. Phys. Rev. Lett. 1995, 75, 1872. [Google Scholar] [CrossRef]
- Geroch, R.P. Topology in general relativity. J. Math. Phys. 1967, 8, 782. [Google Scholar] [CrossRef]
- Tipler, F.J. Singularities and Causality Violation. Ann. Phys. 1977, 108, 1–36. [Google Scholar] [CrossRef]
- Tipler, F.J. Topology Change in Kaluza-Klein and Superstring Theories. Phys. Lett. B 1985, 165, 67–70. [Google Scholar] [CrossRef]
- Sorkin, R.D. Introduction to Topological Geons. NATO Sci. Ser. B 1986, 138, 249–270. [Google Scholar]
- Sorkin, R.D. On Topology Change and Monopole Creation. Phys. Rev. D 1986, 33, 978–982. [Google Scholar] [CrossRef]
- Strominger, A. Vacuum Topology and Incoherence in Quantum Gravity. Phys. Rev. Lett. 1984, 52, 1733. [Google Scholar] [CrossRef]
- Dray, T.; Manogue, C.A.; Tucker, R.W. Particle production from signature change. Gen. Rel. Grav. 1991, 23, 967–971. [Google Scholar] [CrossRef]
- Dray, T.; Manogue, C.A.; Tucker, R.W. The Scalar field equation in the presence of signature change. Phys. Rev. D 1993, 48, 2587–2590. [Google Scholar] [CrossRef] [PubMed]
- Hellaby, C.; Dray, T. Failure of standard conservation laws at a classical change of signature. Phys. Rev. D 1994, 49, 5096–5104. [Google Scholar] [CrossRef] [PubMed]
- Dray, T. Einstein’s equations in the presence of signature change. J. Math. Phys. 1996, 37, 5627–5636. [Google Scholar] [CrossRef]
- Dray, T.; Hellaby, C. Comment on “smooth and discontinuous signature type change in general relativity”. Gen. Rel. Grav. 1996, 28, 1401. [Google Scholar] [CrossRef]
- Dray, T.; Ellis, G.; Hellaby, C.; Manogue, C.A. Gravity and signature change. Gen. Rel. Grav. 1997, 29, 591–597. [Google Scholar] [CrossRef]
- Visser, M. Wormholes, Baby Universes and Causality. Phys. Rev. D 1990, 41, 1116. [Google Scholar] [CrossRef] [PubMed]
- Vilenkin, A. Quantum Cosmology and the Initial State of the Universe. Phys. Rev. D 1988, 37, 888. [Google Scholar] [CrossRef] [PubMed]
- Vilenkin, A. Approaches to quantum cosmology. Phys. Rev. D 1994, 50, 2581–2594. [Google Scholar] [CrossRef] [PubMed]
- Barvinsky, A.O.; Kamenshchik, A.Y. Tunneling geometries. 1. Analyticity, unitarity and instantons in quantum cosmology. Phys. Rev. D 1994, 50, 5093–5114. [Google Scholar] [CrossRef] [PubMed]
- Barvinsky, A.O.; Kamenshchik, A.Y. Quantum origin of the early universe and the energy scale of inflation. Int. J. Mod. Phys. D 1996, 6, 825–844. [Google Scholar] [CrossRef]
- Altshuler, B.L.; Barvinsky, A.O. Quantum cosmology and physics of transitions with a change of the space-time signature. Phys. Usp. 1996, 39, 429–459. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Kamenshchik, A.Y. Cosmological landscape from nothing: Some like it hot. JCAP 2006, 9, 14. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Kamenshchik, A.Y.; Kiefer, C.; Steinwachs, C.F. Tunneling cosmological state revisited: Origin of inflation with a non-minimally coupled Standard Model Higgs inflaton. Phys. Rev. D 2010, 81, 043530. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Kamenshchik, A.Y. Preferred basis, decoherence and a quantum state of the Universe. In From Quantum to Classical; Springer: Cham, Switzerland, 2016; pp. 97–120. [Google Scholar]
- Borde, A. Topology change in classical general relativity. arXiv 1994, arXiv:9406053. [Google Scholar]
- Borde, A. Regular black holes and topology change. Phys. Rev. D 1997, 55, 7615–7617. [Google Scholar] [CrossRef]
- Kriele, M.; Martin, J. Black holes, cosmological singularities and change of signature. Class. Quant. Grav. 1995, 12, 503–512. [Google Scholar] [CrossRef]
- Kossowski, M.; Kriele, M. Smooth and Discontinuous Signature Type Change in General Relativity. Class. Quant. Grav. 1993, 10, 2336. [Google Scholar] [CrossRef]
- Ellis, G.; Sumeruk, A.; Coule, D.; Hellaby, C. Change of signature in classical relativity. Class. Quant. Grav. 1992, 9, 1535–1554. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Covariant change of signature in classical relativity. Gen. Rel. Grav. 1992, 24, 1047. [Google Scholar] [CrossRef]
- Hayward, S.A. Signature change in general relativity. Class. Quant. Grav. 1992, 9, 1851–1862. [Google Scholar] [CrossRef]
- Embacher, F. Actions for signature change. Phys. Rev. D 1995, 51, 6764–6777. [Google Scholar] [CrossRef]
- Martin, J. Cosmological perturbations and classical change of signature. Phys. Rev. D 1995, 52, 6708–6716. [Google Scholar] [CrossRef]
- Darabi, F.; Rastkar, A. A quantum cosmology and discontinuous signature changing classical solutions. Gen. Rel. Grav. 2006, 26, 1355–1366. [Google Scholar] [CrossRef]
- Borowiec, A.; Francaviglia, M.; Volovich, I. Topology change and signature change in non-linear first-order gravity. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 647–667. [Google Scholar] [CrossRef]
- Pedram, P.; Jalalzadeh, S. Signature change from Schutz’s canonical quantum cosmology and its classical analogue. Phys. Rev. D 2008, 77, 123529. [Google Scholar] [CrossRef]
- White, A.; Weinfurtner, S.; Visser, M. Signature change events: A Challenge for quantum gravity? Class. Quant. Grav. 2010, 27, 045007. [Google Scholar] [CrossRef]
- Mielczarek, J.; Linsefors, L.; Barrau, A. Silent initial conditions for cosmological perturbations with a change of spacetime signature. Int. J. Mod. Phys. D 2018, 27, 1850050. [Google Scholar] [CrossRef] [Green Version]
- Ambjørn, J.; Coumbe, D.N.; Gizbert-Studnicki, J.; Jurkiewicz, J. Signature Change of the Metric in CDT Quantum Gravity? JHEP 2015, 8, 33. [Google Scholar] [CrossRef]
- Barrau, A.; Grain, J. Cosmology without time: What to do with a possible signature change from quantum gravitational origin? arXiv 2016, arXiv:1607.07589. [Google Scholar]
- Nissinen, J.; Volovik, G.E. Effective Minkowski-to-Euclidean signature change of the magnon BEC pseudo-Goldstone mode in polar3He. Pisma Zh. Eksp. Teor. Fiz. 2017, 106, 220–221. [Google Scholar] [CrossRef]
- Zhang, F. Alternative route towards the change of metric signature. Phys. Rev. D 2019, 100, 064043. [Google Scholar] [CrossRef]
- Greensite, J. Dynamical origin of the Lorentzian signature of space-time. Phys. Lett. B 1993, 300, 34–37. [Google Scholar] [CrossRef]
- Carlini, A.; Greensite, J. Why is space-time Lorentzian? Phys. Rev. D 1994, 49, 866–878. [Google Scholar] [CrossRef]
- Magueijo, J.; Rodríguez-Vázquez, M.; Westman, H.; Złośnik, T. Cosmological signature change in Cartan Gravity with dynamical symmetry breaking. Phys. Rev. D 2014, 89, 063542. [Google Scholar] [CrossRef]
- Moffat, J.W. Generalized Riemann spaces. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1956; Volume 52, pp. 623–625. [Google Scholar]
- Moffat, J.W. New theory of gravitation. Phys. Rev. D 1979, 19, 3554. [Google Scholar] [CrossRef]
- Moffat, J.W. Non-anticommutative quantum gravity. Int. J. Mod. Phys. A 2015, 30, 1550101. [Google Scholar] [CrossRef]
- Munkhammar, J. Linearization of Moffat’s Symmetric Complex Metric Gravity. arXiv 2009, arXiv:0909.3586. [Google Scholar]
- Penrose, R. Nonlinear Gravitons and Curved Twistor Theory. Gen. Rel. Grav. 1976, 7, 31–52. [Google Scholar] [CrossRef]
- Plebanski, J.F. Some solutions of complex Einstein equations. Math. Phys. 1975, 16, 2395. [Google Scholar] [CrossRef]
- Plebanski, J.F.; Schild, A. Complex relativity and double KS metrics. Il Nuovo Cimento B 1976, 35 B, N135. [Google Scholar] [CrossRef]
- Plebanski, J.F. On the separation of Einsteinian substructures. J. Math. Phys. 1977, 18, 2511. [Google Scholar] [CrossRef]
- Boyer, C.P.; Plebanski, J.F. An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces. J. Math. Phys. 1985, 26, 229. [Google Scholar] [CrossRef]
- Witten, E. A New Look At The Path Integral Of Quantum Mechanics. arXiv 2010, arXiv:1009.6032. [Google Scholar] [CrossRef]
- Witten, E. A Note On Complex Spacetime Metrics. arXiv 2021, arXiv:2111.06514. [Google Scholar]
- Lehners, J.L. Allowable complex metrics in minisuperspace quantum cosmology. arXiv 2021, arXiv:2111.07816. [Google Scholar] [CrossRef]
- Hull, C.M. Timelike T duality, de Sitter space, large N gauge theories and topological field theory. JHEP 1998, 7, 21. [Google Scholar] [CrossRef]
- Hull, C.M. Duality and the signature of space-time. JHEP 1998, 11, 17. [Google Scholar] [CrossRef]
- Hull, C.M.; Khuri, R.R. Branes, times and dualities. Nucl. Phys. B 1998, 356, 219–244. [Google Scholar] [CrossRef]
- Medevielle, M.; Mohaupt, T.; Pope, G. Type-II Calabi-Yau compactifications, T-duality and special geometry in general spacetime signature. arXiv 2021, arXiv:2111.09017. [Google Scholar] [CrossRef]
- Vladimirov, V.S.; Volovich, I.V. Superanalysis. I. Differential Calculus. Theor. Math. Phys. 1984, 59, 317–335. [Google Scholar] [CrossRef]
- Vladimirov, V.S.; Volovich, I.V. P-ADIC Quantum Mechanics. Sov. Phys. Dokl. 1988, 33, 669–670. [Google Scholar] [CrossRef]
- Arefeva, I.Y.; Dragovich, B.; Frampton, P.H.; Volovich, I.V. Wave function of the universe and p-adic gravity. Int. J. Mod. Phys. A 1991, 6, 4341–4358. [Google Scholar] [CrossRef]
- Dragovich, B.; Khrennikov, A.Y.; Kozyrev, S.V.; Volovich, I.V. On p-Adic Mathematical Physics. Anal. Appl. 2009, 1, 1–17. [Google Scholar] [CrossRef]
- Hooft, G.T. Deterministic Quantum Mechanics: The Mathematical Equations. Front. Phys. 2020, 8, 253. [Google Scholar] [CrossRef]
- Hooft, G.T. Fast Vacuum Fluctuations and the Emergence of Quantum Mechanics. Found. Phys. 2021, 51, 63. [Google Scholar] [CrossRef]
- Hooft, G.T. Explicit construction of Local Hidden Variables for any quantum theory up to any desired accuracy. arXiv 2021, arXiv:2103.04335. [Google Scholar]
- Hooft, G.T. An unorthodox view on quantum mechanics. arXiv 2021, arXiv:2104.03179. [Google Scholar]
- Hooft, G.T. Ontology in quantum mechanics. arXiv 2021, arXiv:2107.14191. [Google Scholar]
- Feldbrugge, J.; Lehners, J.L.; Turok, N. Lorentzian Quantum Cosmology. Phys. Rev. D 2017, 95, 103508. [Google Scholar] [CrossRef]
- Feldbrugge, J.; Lehners, J.L.; Turok, N. No smooth beginning for spacetime. Phys. Rev. Lett. 2017, 119, 171301. [Google Scholar] [CrossRef]
- Dorronsoro, J.D.; Halliwell, J.J.; Hartle, J.B.; Hertog, T.; Janssen, O. Real no-boundary wave function in Lorentzian quantum cosmology. Phys. Rev. D 2017, 96, 043505. [Google Scholar] [CrossRef]
- Feldbrugge, J.; Lehners, J.L.; Turok, N. No rescue for the no boundary proposal: Pointers to the future of quantum cosmology. Phys. Rev. D 2018, 97, 023509. [Google Scholar]
- Feldbrugge, J.; Lehners, J.L.; Turok, N. Inconsistencies of the New No-Boundary Proposal. Universe 2018, 4, 100. [Google Scholar] [CrossRef]
- Lipatov, L.N. Gauge invariant effective action for high-energy processes in QCD. Nucl. Phys. B 1995, 452, 369. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, S.; Lipatov, L.; Prygarin, A. Effective action for reggeized gluons, classical gluon field of relativistic color charge and color glass condensate approach. Eur. Phys. J. C 2017, 77, 527. [Google Scholar] [CrossRef]
- Bondarenko, S.; Lipatov, L.; Pozdnyakov, S.; Prygarin, A. One loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus. Eur. Phys. J. C 2017, 77, 630. [Google Scholar] [CrossRef]
- Lipatov, L.N. High-energy scattering in QCD and in quantum gravity and two-dimensional field theories. Nucl. Phys. B 1991, 365, 614. [Google Scholar] [CrossRef]
- Lipatov, L.N. Effective action for Regge processes in QCD and in gravity. Theor. Math. Phys. 2011, 169, 1370. [Google Scholar] [CrossRef]
- Lipatov, L.N. Effective action for the Regge processes in gravity. Phys. Part. Nucl. 2013, 44, 391. [Google Scholar] [CrossRef]
- Lipatov, L.N. High energy scattering in QCD and in quantum gravity. Subnucl. Ser. 2014, 50, 213. [Google Scholar]
- Lipatov, L.N. Euler-Lagrange equations for high energy actions in QCD and in gravity. EPJ Web Conf. 2016, 125, 01010. [Google Scholar] [CrossRef]
- Lipatov, L.N. Effective actions for high energy scattering in QCD and in gravity. EPJ Web Conf. 2017, 164, 02002. [Google Scholar] [CrossRef]
- Bondarenko, S.; Pozdnyakov, S.; Zubkov, M.A. High energy scattering in Einstein–Cartan gravity. Eur. Phys. J. C 2021, 81, 613. [Google Scholar] [CrossRef]
- Bondarenko, S.; Zubkov, M.A. Riemann-Cartan gravity with dynamical signature. JETP Lett. 2022, 116, 54–60. [Google Scholar] [CrossRef]
- Bondarenko, S.; Motyka, L. Solving effective field theory of interacting QCD pomerons in the semi-classical approximation. Phys. Rev. D 2017, 75, 114015. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, S.; Braun, M.A. Boundary conditions in the QCD nucleus-nucleus scattering problem. Nucl. Phys. A 2018, 799, 151–166. [Google Scholar] [CrossRef]
- Armesto, N.; Bondarenko, S.; Milhano, J.G.; Quiroga, P. Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD. JHEP 2008, 5, 103. [Google Scholar] [CrossRef]
- Bondarenko, S. Regge Field Theory in zero transverse dimensions: Loops versus ’net’ diagrams. Eur. Phys. J. C 2011, 71, 1587. [Google Scholar] [CrossRef]
- Bondarenko, S.; Horwitz, L.; Levitan, J.; Yahalom, A. On asymptotic solutions of RFT in zero transverse dimensions. Nucl. Phys. A 2013, 912, 49–65. [Google Scholar] [CrossRef]
- Kontsevich, M.; Segal, G. Wick Rotation and the Positivity of Energy in Quantum Field Theory. Quart. J. Math. Oxf. Ser. 2021, 72, 673–699. [Google Scholar] [CrossRef]
- Bondarenko, S.; Hoz-Coronell, V.D.L. Time kink: Modeling change of metric signature. arXiv 2022, arXiv:2204.07828. [Google Scholar]
- Kothawala, D. Action and Observer dependence in Euclidean quantum gravity. Class. Quant. Grav. 2018, 35, 03LT01. [Google Scholar] [CrossRef]
- Kothawala, D. Euclidean Action and the Einstein tensor. Phys. Rev. D 2018, 97, 124062. [Google Scholar] [CrossRef]
- Singh, R.; Kothawala, D. Geometric aspects of covariant Wick rotation. arXiv 2020, arXiv:2010.01822. [Google Scholar]
- Bondarenko, S. Negative mass scenario and Schwarzschild spacetime in general relativity. Mod. Phys. Lett. A 2019, 34, 1950084. [Google Scholar] [CrossRef]
- Bondarenko, S. CPTM discrete symmetry, quantum wormholes and cosmological constant problem. Universe 2020, 6, 121. [Google Scholar] [CrossRef]
- Bondarenko, S. CPTM symmetry, closed time paths and cosmological constant problem in the formalism of extended manifold. Eur. Phys. J. C 2021, 81, 253. [Google Scholar] [CrossRef]
- Villata, M. CPT symmetry and antimatter gravity in general relativity. EPL 2011, 94, 20001. [Google Scholar] [CrossRef]
- Villata, M. The matter-antimatter interpretation of Kerr spacetime. Ann. Phys. 2015, 527, 507. [Google Scholar] [CrossRef]
- Debergh, N.; Petit, J.P.; D’Agostini, G. On evidence for negative energies and masses in the Dirac equation through a unitary time-reversal operator. J. Phys. Comm. 2018, 2, 115012. [Google Scholar] [CrossRef]
- Socas-Navarro, H. Can a negative-mass cosmology explain dark matter and dark energy? Astron. Astrophys. 2019, 626, A5. [Google Scholar] [CrossRef]
- Ni, G.J. A New insight into the negative mass paradox of gravity and the accelerating universe. Rel. Grav. Cosmol. 2004, 1, 123–136. [Google Scholar]
- Chardin, G. Motivations for antigravity in general relativity. Hyperfine Interact. 1997, 107, 83. [Google Scholar] [CrossRef]
- Petit, J.P.; D’Agostini, G. Negative Mass hypothesis in cosmology and the nature of dark energy. Astrophys. Space Sci. 2014, 354, 611–615. [Google Scholar] [CrossRef]
- Nemiroff, R.J.; Joshi, R.; Patla, B.R. An exposition on Friedmann Cosmology with Negative Energy Densities. JCAP 2015, 1506, 6. [Google Scholar] [CrossRef]
- Kofinas, G.; Zarikas, V. Solution of the dark energy and its coincidence problem based on local antigravity sources without fine-tuning or new scales. Phys. Rev. D 2018, 97, 123542. [Google Scholar] [CrossRef]
- Manfredi, G.; Rouet, J.L.; Miller, B.; Chardin, G. Cosmological structure formation with negative mass. Phys. Rev. D 2018, 98, 023514. [Google Scholar] [CrossRef]
- Chardin, G.; Manfredi, G. Gravity, antimatter and the Dirac-Milne universe. Hyperfine Interact. 2018, 239, 45. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.-P. Twin universes cosmology. Astrophys. Space Sci. 1995, 226, 273. [Google Scholar] [CrossRef]
- Petit, J.P.; d’Agostini, G. Bigravity: A Bimetric model of the Universe with variable constants, including VSL (variable speed of light). arXiv 2008, arXiv:0803.1362. [Google Scholar]
- Petit, J.P.; d’Agostini, G. Cosmological bimetric model with interacting positive and negative masses and two different speeds of light, in agreement with the observed acceleration of the Universe. Mod. Phys. Lett. A 2014, 29, 1450182. [Google Scholar] [CrossRef]
- Petit, J.P.; d’Agostini, G. Lagrangian derivation of the two coupled field equations in the Janus cosmological model. Astrophys. Space Sci. 2015, 357, 67. [Google Scholar] [CrossRef]
- Petit, P.; D’Agostini, G. Cancellation of the singularity of the Schwarzschild solution with natural mass inversion process. Mod. Phys. Lett. A 2015, 30, 1550051. [Google Scholar] [CrossRef]
- Agostini, G.D.; Petit, J.P. Constraints on Janus Cosmological model from recent observations of supernovae type Ia. Astrophys. Space Sci. 2018, 363, 1–7. [Google Scholar]
- Hossenfelder, S. Anti-gravitation. Phys. Lett. B 2006, 636, 119–125. [Google Scholar] [CrossRef]
- Hossenfelder, S. Cosmological consequences of anti-gravitation. arXiv 2006, arXiv:gr-qc/0605083. [Google Scholar]
- Baranov, A.A. Cosmologic term, screening of gravitation, and hypothesis of negative masses. Izv. Vuz. Fiz. 1971, 11, 118. [Google Scholar]
- Dolgov, A.D. Cosmic antigravity. arXiv 2012, arXiv:1206.3725. [Google Scholar]
- Boyle, L.; Finn, K.; Turok, N. CPT-Symmetric Universe. Phys. Rev. Lett. 2018, 121, 251301. [Google Scholar] [CrossRef]
- Alonso, J.L.; Carmona, J.M. Before spacetime: A proposal of a framework for multiverse quantum cosmology based on three cosmological conjectures. Class. Quant. Grav. 2019, 36, 185001. [Google Scholar] [CrossRef]
- Kaplan, D.E.; Sundrum, R. A Symmetry for the cosmological constant. JHEP 2006, 607, 42. [Google Scholar] [CrossRef]
- Hebecker, A.; Mikhail, T.; Soler, P. Euclidean wormholes, baby universes, and their impact on particle physics and cosmology. Front. Astron. Space Sci. 2018, 5, 35. [Google Scholar] [CrossRef]
- Linde, A.D. The Universe Multiplication and the Cosmological Constant Problem. Phys. Lett. B 1988, 200, 272. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.; Moschella, U. Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D 2003, 67, 063509. [Google Scholar] [CrossRef]
- Keresztes, Z.; Gergely, L.A.; Kamenshchik, A.Y. Spherical “Top-Hat” Collapse in general-Chaplygin-gas-dominated universes. Phys. Rev. D 2012, 86, 063522. [Google Scholar] [CrossRef]
- Keresztes, Z.; Gergely, L.Á.; Kamenshchik, A.Y.; Gorini, V.; Polarski, D. Soft singularity crossing and transformation of matter properties. Phys. Rev. D 2013, 88, 023535. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y. Quantum cosmology and late-time singularities. Class. Quantum Gravity 2013, 30, 173001. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Vernov, S.Y.; Tronconi, A.; Venturi, G. Bianchi-I cosmological model and crossing singularities. Phys. Rev. D 2017, 95, 083503. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y. Singularity crossing, transformation of matter properties and the problem of parametrization in field theories. Found. Phys. 2018, 48, 1159–1176. [Google Scholar] [CrossRef]
- Galkina, O.; Kamenshchik, A.Y. Future soft singularities, Born-Infeld-like fields, and particles. Phys. Rev. D 2020, 102, 024078. [Google Scholar] [CrossRef]
- Ben-Dayan, I.; Hadad, M.; Michaelis, A. The Grand Canonical Multiverse and the Small Cosmological Constant. arXiv 2021, arXiv:2110.06249. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondarenko, S. Dynamical Signature: Complex Manifolds, Gauge Fields and Non-Flat Tangent Space. Universe 2022, 8, 497. https://doi.org/10.3390/universe8100497
Bondarenko S. Dynamical Signature: Complex Manifolds, Gauge Fields and Non-Flat Tangent Space. Universe. 2022; 8(10):497. https://doi.org/10.3390/universe8100497
Chicago/Turabian StyleBondarenko, Sergey. 2022. "Dynamical Signature: Complex Manifolds, Gauge Fields and Non-Flat Tangent Space" Universe 8, no. 10: 497. https://doi.org/10.3390/universe8100497
APA StyleBondarenko, S. (2022). Dynamical Signature: Complex Manifolds, Gauge Fields and Non-Flat Tangent Space. Universe, 8(10), 497. https://doi.org/10.3390/universe8100497