The Xenon Road to Direct Detection of Dark Matter at LNGS: The XENON Project
Abstract
:1. Introduction
2. Direct Detection of Particle Dark Matter with LXe Detectors
2.1. Direct Detection Principles
2.2. Dark Matter Signatures
2.2.1. DM–Nucleus Elastic Scattering
2.2.2. Alternative DM Signatures
3. Xenon-Based Dark Matter Detectors
3.1. Liquid Xenon Properties
3.2. Dual-Phase LXe TPC Technology
4. Detectors of the XENON Project
4.1. XENON10
4.2. XENON100
4.3. XENON1T
4.4. XENONnT
5. Backgrounds and Mitigation Strategies
5.1. Background Sources
5.1.1. ER Backgrounds
5.1.2. NR Backgrounds
5.2. Background Mitigation
5.2.1. LNGS Underground Location
5.2.2. Muon Veto
5.2.3. Radioassay of Detector Components
5.2.4. Neutron Veto
5.2.5. Krypton and Radon Distillation
6. Physics Highlights from the XENON Experiments
6.1. XENON10
6.2. XENON100
6.3. XENON1T
6.4. XENONnT
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. The Dark side of gravity: Modified theories of gravity. arXiv 2008, arXiv:0807.1640. [Google Scholar]
- Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef] [Green Version]
- Kolb, E.W.; Turner, M.S. The Early Universe; CRC Press: Boca Raton, FL, USA, 1990; Volume 69. [Google Scholar]
- Steigman, G.; Turner, M.S. Cosmological Constraints on the Properties of Weakly Interacting Massive Particles. Nucl. Phys. B 1985, 253, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rept. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys. 2010, 48, 495–545. [Google Scholar] [CrossRef] [Green Version]
- Pérez de los Heros, C. Status, Challenges and Directions in Indirect Dark Matter Searches. Symmetry 2020, 12, 1648. [Google Scholar] [CrossRef]
- Boveia, A.; Doglioni, C. Dark Matter Searches at Colliders. Ann. Rev. Nucl. Part. Sci. 2018, 68, 429–459. [Google Scholar] [CrossRef]
- Schumann, M. Direct Detection of WIMP Dark Matter: Concepts and Status. J. Phys. G 2019, 46, 103003. [Google Scholar] [CrossRef] [Green Version]
- Cushman, P.; Galbiati, C.; McKinsey, D.N.; Robertson, H.; Tait, T.M.P.; Bauer, D.; Borgland, A.; Cabrera, B.; Calaprice, F.; Cooley, J.; et al. Working Group Report: WIMP Dark Matter Direct Detection; Community Summer Study 2013: Snowmass on the Mississippi; Fermi National Accelerator Lab. (FNAL): Batavia, IL, USA, 2013. [Google Scholar]
- Billard, J.; Boulay, M.; Cebrián, S.; Covi, L.; Fiorillo, G.; Green, A.; Kopp, J.; Majorovits, B.; Palladino, K.; Petricca, F.; et al. Direct Detection of Dark Matter—APPEC Committee Report. arXiv 2021, arXiv:2104.07634. [Google Scholar]
- Akerib, D.S. et al. [LZ Collaboration] The LUX-ZEPLIN (LZ) Experiment. Nucl. Instrum. Meth. A 2020, 953, 163047. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.G.; Abdukerim, A.; Chen, X.; Chen, Y.H.; Cui, X.Y.; Dong, B.B.; Fang, D.Q.; Fu, C.B.; Giboni, K.; Giuliani, F.; et al. Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 2019, 62, 31011. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L. DARWIN: Dark matter WIMP search with noble liquids. J. Phys. Conf. Ser. 2012, 375, 012028. [Google Scholar] [CrossRef] [Green Version]
- Goodman, M.W.; Witten, E. Detectability of Certain Dark Matter Candidates. Phys. Rev. D 1985, 31, 3059. [Google Scholar] [CrossRef]
- Drukier, A.; Stodolsky, L. Principles and Applications of a Neutral Current Detector for Neutrino Physics and Astronomy. Phys. Rev. D 1984, 30, 2295. [Google Scholar] [CrossRef]
- Bosma, A. 21-cm line studies of spiral galaxies. 2. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. Astron. J. 1981, 86, 1825. [Google Scholar] [CrossRef]
- Rubin, V.C.; Thonnard, N.; Ford, W.K., Jr. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4kpc/ to UGC 2885/R = 122 kpc/. Astrophys. J. 1980, 238, 471. [Google Scholar] [CrossRef]
- Nesti, F.; Salucci, P. The Dark Matter halo of the Milky Way, AD 2013. J. Cosmol. Astropart. Phys. 2013, 7, 16. [Google Scholar] [CrossRef]
- Gates, E.I.; Gyuk, G.; Turner, M.S. The Local halo density. Astrophys. J. Lett. 1995, 449, L123–L126. [Google Scholar] [CrossRef]
- Kerr, F.J.; Lynden-Bell, D. Review of galactic constants. Mon. Not. R. Astron. Soc. 1986, 221, 1023. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.C.; Ruchti, G.R.; Helmi, A.; Wyse, R.F.G.; Fulbright, J.P.; Freeman, K.C.; Navarro, J.F.; Seabroke, G.M.; Steinmetz, M.; Williams, M.; et al. The RAVE Survey: Constraining the Local Galactic Escape Speed. Mon. Not. R. Astron. Soc. 2007, 379, 755–772. [Google Scholar] [CrossRef]
- Baxter, D.; Bloch, I.M.; Bodnia, E.; Chen, X.; Conrad, J.; Di Gangi, P.; Dobson, J.E.Y.; Durnford, D.; Haselschwardt, S.J.; Kaboth, A.; et al. Recommended conventions for reporting results from direct dark matter searches. arXiv 2021, arXiv:2105.00599. [Google Scholar]
- Green, A.M. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments. J. Phys. G 2017, 44, 084001. [Google Scholar] [CrossRef]
- Schoenrich, R.; Binney, J.; Dehnen, W. Local Kinematics and the Local Standard of Rest. Mon. Not. R. Astron. Soc. 2010, 403, 1829. [Google Scholar] [CrossRef] [Green Version]
- Drukier, A.K.; Freese, K.; Spergel, D.N. Detecting Cold Dark Matter Candidates. Phys. Rev. D 1986, 33, 3495–3508. [Google Scholar] [CrossRef] [PubMed]
- Collar, J.I.; Avignone, F.T. Diurnal modulation effects in cold dark matter experiments. Phys. Lett. B 1992, 275, 181–185. [Google Scholar] [CrossRef]
- Spergel, D.N. The Motion of the Earth and the Detection of Wimps. Phys. Rev. D 1988, 37, 1353. [Google Scholar] [CrossRef]
- Mayet, F.; Green, A.M.; Battat, J.B.R.; Billard, J.; Bozorgnia, N.; Gelmini, G.B.; Gondolo, P.; Kavanagh, B.J.; Lee, S.K.; Loomba, D.; et al. A review of the discovery reach of directional Dark Matter detection. Phys. Rep. 2016, 627, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Lewin, J.D.; Smith, P.F. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 1996, 6, 87–112. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Reece, M.; Wang, L.T. Non-relativistic effective theory of dark matter direct detection. J. Cosmol. Astropart. Phys. 2010, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, A.L.; Haxton, W.; Katz, E.; Lubbers, N.; Xu, Y. The Effective Field Theory of Dark Matter Direct Detection. J. Cosmol. Astropart. Phys. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Hoferichter, M.; Klos, P.; Menéndez, J.; Schwenk, A. Analysis strategies for general spin-independent WIMP-nucleus scattering. Phys. Rev. D 2016, 94, 63505. [Google Scholar] [CrossRef] [Green Version]
- Helm, R.H. Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei. Phys. Rev. 1956, 104, 1466–1475. [Google Scholar] [CrossRef]
- Cerdeno, D.G.; Fornasa, M.; Huh, J.H.; Peiro, M. Nuclear uncertainties in the spin-dependent structure functions for direct dark matter detection. Phys. Rev. D 2013, 87, 23512. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Pittel, S.; Vogel, P. Nuclear physics of dark matter detection. Int. J. Mod. Phys. E 1992, 1, 1–37. [Google Scholar] [CrossRef]
- Baudis, L.; Kessler, G.; Klos, P.; Lang, R.F.; Menéndez, J.; Reichard, S.; Schwenk, A. Signatures of Dark Matter Scattering Inelastically Off Nuclei. Phys. Rev. D 2013, 88, 115014. [Google Scholar] [CrossRef] [Green Version]
- Tucker-Smith, D.; Weiner, N. Inelastic dark matter. Phys. Rev. D 2001, 64, 043502. [Google Scholar] [CrossRef] [Green Version]
- Ibe, M.; Nakano, W.; Shoji, Y.; Suzuki, K. Migdal Effect in Dark Matter Direct Detection Experiments. JHEP 2018, 3, 194. [Google Scholar] [CrossRef]
- Dolan, M.J.; Kahlhoefer, F.; McCabe, C. Directly detecting sub-GeV dark matter with electrons from nuclear scattering. Phys. Rev. Lett. 2018, 121, 101801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouvaris, C.; Pradler, J. Probing sub-GeV Dark Matter with conventional detectors. Phys. Rev. Lett. 2017, 118, 031803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essig, R.; Mardon, J.; Volansky, T. Direct Detection of Sub-GeV Dark Matter. Phys. Rev. D 2012, 85, 076007. [Google Scholar] [CrossRef] [Green Version]
- Derevianko, A.; Dzuba, V.A.; Flambaum, V.V.; Pospelov, M. Axio-electric effect. Phys. Rev. D 2010, 82, 065006. [Google Scholar] [CrossRef] [Green Version]
- Arisaka, K.; Beltrame, P.; Ghag, C.; Kaidi, J.; Lung, K.; Lyashenko, A.; Peccei, R.D.; Smith, P.; Ye, K. Expected Sensitivity to Galactic/Solar Axions and Bosonic Super-WIMPs based on the Axio-electric Effect in Liquid Xenon Dark Matter Detectors. Astropart. Phys. 2013, 44, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Lubkin, G.B. Liquid-xenon proportional counter. Phys. Today 1972, 25, 19. [Google Scholar] [CrossRef]
- Muller, R.A.; Derenzo, S.E.; Smadja, G.; Smith, D.B.; Smits, R.G.; Zaklad, H.; Alvarez, L.W. Liquid-Filled Proportional Counter. Phys. Rev. Lett. 1971, 27, 532–535. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Marrodan Undagoitia, T.; Schumann, M. Neutrino physics with multi-ton scale liquid xenon detectors. J. Cosmol. Astropart. Phys. 2014, 1, 44. [Google Scholar] [CrossRef] [Green Version]
- Wittweg, C.; Lenardo, B.; Fieguth, A.; Weinheimer, C. Detection prospects for the second-order weak decays of 124Xe in multi-tonne xenon time projection chambers. Eur. Phys. J. C 2020, 80, 1161. [Google Scholar] [CrossRef]
- Agostini, F. et al. [DARWIN Collaboration] Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136Xe. Eur. Phys. J. C 2020, 80, 808. [Google Scholar] [CrossRef]
- Hill, K.D.; Steele, A.G. The triple point of xenon. Metrologia 2005, 42, 278–288. [Google Scholar] [CrossRef]
- Aprile, E. et al. [The XENON Collaboration] Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment. Eur. Phys. J. C 2015, 75, 546. [Google Scholar] [CrossRef] [Green Version]
- Chepel, V.; Araujo, H. Liquid noble gas detectors for low energy particle physics. J. Instrum. 2013, 8, R04001. [Google Scholar] [CrossRef] [Green Version]
- Mock, J.; Barry, N.; Kazkaz, K.; Szydagis, M.; Tripathi, M.; Uvarov, S.; Woods, M.; Walsh, N. Modeling Pulse Characteristics in Xenon with NEST. J. Instrum. 2014, 9, T04002. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S. et al. [ LUX Collaboration] Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector. Phys. Rev. D 2018, 97, 112002. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Giboni, K.L.; Majewski, P.; Ni, K.; Yamashita, M. Observation of Anti-correlation between Scintillation and Ionization for MeV Gamma-Rays in Liquid Xenon. Phys. Rev. B 2007, 76, 014115. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Contreras, H.; Goetzke, L.W.; Melgarejo Fernandez, A.J.; Messina, M.; Naganoma, J.; Plante, G.; Rizzo, A.; Shagin, P.; Wall, R. Measurements of proportional scintillation and electron multiplication in liquid xenon using thin wires. J. Instrum. 2014, 9, P11012. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [The XENON collaboration] Physics reach of the XENON1T dark matter experiment. J. Cosmol. Astropart. Phys. 2016, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Szydagis, M.; Barry, N.; Kazkaz, K.; Mock, J.; Stolp, D.; Sweany, M.; Tripathi, M.; Uvarov, S.; Walsh, N.; Woods, M. NEST: A comprehensive model for scintillation yield in liquid xenon. J. Instrum. 2011, 6, P10002. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] The XENON1T Dark Matter Experiment. Eur. Phys. J. C 2017, 77, 881. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON Collaboration] Energy resolution and linearity of XENON1T in the MeV energy range. Eur. Phys. J. C 2020, 80, 785. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection. Phys. Rev. D 2019, 100, 052014. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Dahl, C.E.; DeViveiros, L.; Gaitskell, R.; Giboni, K.L.; Kwong, J.; Majewski, P.; Ni, K.; Shutt, T.; Yamashita, M. Simultaneous measurement of ionization and scintillation from nuclear recoils in liquid xenon as target for a dark matter experiment. Phys. Rev. Lett. 2006, 97, 081302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitachi, A.; Takahashi, T.; Funayama, N.; Masuda, K.; Kikuchi, J.; Doke, T. Effect of ionization density on the time dependence of luminescence from liquid argon and xenon. Phys. Rev. B 1983, 27, 5279–5285. [Google Scholar] [CrossRef]
- Angle, J.; Aprile, E.; Arneodo, F.; Baudis, L.; Bernstein, A.; Bolozdynya, A.; Brusov, P.; Coelho, L.C.C.; Dahl, C.E.; DeViveiros, L.; et al. A search for light dark matter in XENON10 data. Phys. Rev. Lett. 2011, 107, 051301, Erratum: Phys. Rev. Lett. 2013, 110, 249901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Design and Performance of the XENON10 Dark Matter Experiment. Astropart. Phys. 2011, 34, 679–698. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, M.; Doke, T.; Kawasaki, K.; Kikuchi, J.; Suzuki, S. Scintillation response of liquid Xe surrounded by PTFE reflector for gamma rays. Nucl. Instrum. Methods Phys. Res. A 2004, 535, 692–698. [Google Scholar] [CrossRef]
- Haruyama, T.; Kasami, K.; Inoue, H.; Mihara, S.; Matsubara, Y. Development of a high-power coaxial pulse tube refrigerator for a liquid xenon calorimeter. AIP Conf. Proc. 2004, 710, 1459–1466. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON100 Collaboration] The XENON100 Dark Matter Experiment. Astropart. Phys. 2012, 35, 573–590. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration] Material screening and selection for XENON100. Astropart. Phys. 2011, 35, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration] Study of the electromagnetic background in the XENON100 experiment. Phys. Rev. D 2011, 83, 082001, Erratum: Phys. Rev. D 2012, 85, 029904. [Google Scholar] [CrossRef] [Green Version]
- Barrow, P.; Baudis, L.; Cichon, D.; Danisch, M.; Franco, D.; Kaether, F.; Kish, A.; Lindner, M.; Marrodan Undagoitia, T.; Mayani, D.; et al. Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector. J. Instrum. 2017, 12, P01024. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L.; Behrens, A.; Ferella, A.; Kish, A.; Marrodan Undagoitia, T.; Mayani, D.; Schumann, M. Performance of the Hamamatsu R11410 Photomultiplier Tube in cryogenic Xenon Environments. J. Instrum. 2013, 8, P04026. [Google Scholar] [CrossRef] [Green Version]
- Lung, K.; Arisaka, K.; Bargetzi, A.; Beltrame, P.; Cahill, A.; Genma, T.; Ghag, C.; Gordon, D.; Sainz, J.; Teymourian, A.; et al. Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments. Nucl. Instrum. Meth. A 2012, 696, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Material radioassay and selection for the XENON1T dark matter experiment. Eur. Phys. J. C 2017, 77, 890. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON Collaboration] Observation of two-neutrino double electron capture in 124Xe with XENON1T. Nature 2019, 568, 532–535. [Google Scholar]
- Aprile, E. et al. [The XENON Collaboration] Projected WIMP sensitivity of the XENONnT dark matter experiment. J. Cosmol. Astropart. Phys. 2020, 11, 31. [Google Scholar] [CrossRef]
- Berger, M. XCOM: Photon Cross Sections Database. 2010. Available online: http://www.nist.gov/pml/data/xcom/index.cfm (accessed on 20 August 2021).
- Du, X.; Bailey, K.; Lu, Z.T.; Mueller, P.; O’Connor, T.; Young, L. An atom trap system for practical 81 Kr dating. Rev. Sci. Instruments 2004, 75, 3224–3232. [Google Scholar] [CrossRef]
- Albert, J.B. et al. [EXO-200 Collaboration] Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector. Phys. Rev. 2014, C89, 015502. [Google Scholar]
- Aalbers, J. et al. [DARWIN Collaboration] Solar neutrino detection sensitivity in DARWIN via electron scattering. Eur. Phys. J. C 2020, 80, 1133. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark Matter Search Results from a One Tonne×Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [Green Version]
- Akimov, D.; Albert, J.B.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Brown, A.; Bolozdynya, A.; Cabrera-Palmer, B.; et al. Observation of Coherent Elastic Neutrino-Nucleus Scattering. Science 2017, 357, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Billard, J.; Strigari, L.; Figueroa-Feliciano, E. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 2014, 89, 023524. [Google Scholar] [CrossRef] [Green Version]
- Miramonti, L. European underground laboratories: An Overview. AIP Conf. Proc. 2005, 785, 3–11. [Google Scholar]
- Aglietta, M. et al. [LVD Collaboration] Muon ‘Depth intensity’ relation measured by LVD underground experiment and cosmic ray muon spectrum at sea level. Phys. Rev. D 1998, 58, 092005. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.A.; Pandola, L.; Tomasello, V. Neutron- and muon-induced background in underground physics experiments. Eur. Phys. J. A 2008, 36, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Wulandari, H.; Jochum, J.; Rau, W.; von Feilitzsch, F. Neutron flux underground revisited. Astropart. Phys. 2004, 22, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Bruno, G.; Fulgione, W. Flux measurement of fast neutrons in the Gran Sasso underground laboratory. Eur. Phys. J. C 2019, 79, 747. [Google Scholar] [CrossRef] [Green Version]
- Mei, D.M.; Hime, A. Muon-induced background study for underground laboratories. Phys. Rev. D 2006, 73, 053004. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [The XENON Collaboration] Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment. J. Instrum. 2014, 9, P11006. [Google Scholar] [CrossRef]
- Geis, C.; Grignon, C.; Oberlack, U.; Ramírez García, D.; Weitzel, Q. Optical response of highly reflective film used in the water Cherenkov muon veto of the XENON1T dark matter experiment. J. Instrum. 2017, 12, P06017. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L.; Ferella, A.D.; Askin, A.; Angle, J.; Aprile, E.; Bruch, T.; Kish, A.; Laubenstein, M.; Manalaysay, A.; Marrodan Undagoitia, T.; et al. Gator: A low-background counting facility at the Gran Sasso Underground Laboratory. J. Instrum. 2011, 6, P08010. [Google Scholar] [CrossRef]
- Heusser, G.; Weber, M.; Hakenmüller, J.; Laubenstein, M.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. GIOVE—A new detector setup for high sensitivity germanium spectroscopy at shallow depth. Eur. Phys. J. C 2015, 75, 531. [Google Scholar] [CrossRef] [Green Version]
- Von Sivers, M.; Hofmann, B.A.; Rosén, R.; Schumann, M. The GeMSE facility for low-background γ-ray spectrometry. J. Instrum. 2016, 11, P12017. [Google Scholar] [CrossRef]
- Nisi, S.; Vacri, A.D.; Vacri, M.D.; Stramenga, A.; Laubenstein, M. Comparison of inductively coupled mass spectrometry and ultra low-level gamma-ray spectroscopy for ultra low background material selection. Appl. Radiat. Isot. 2009, 67, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Zuzel, G.; Simgen, H. High sensitivity radon emanation measurements. Appl. Radiat. Isot. 2009, 67, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Aprile, E. et al. [XENON Collaboration] Removing krypton from xenon by cryogenic distillation to the ppq level. Eur. Phys. J. C 2017, 77, 275. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. First Dark Matter Search Results from the XENON1T Experiment. Phys. Rev. Lett. 2017, 119, 181301. [Google Scholar] [CrossRef] [Green Version]
- Lindemann, S.; Simgen, H. Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer. Eur. Phys. J. C 2014, 74, 2746. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Online222 Rn removal by cryogenic distillation in the XENON100 experiment. Eur. Phys. J. C 2017, 77, 358. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Angevaare, J.R.; Arneodo, F.; et al. 222Rn emanation measurements for the XENON1T experiment. Eur. Phys. J. C 2021, 81, 337. [Google Scholar]
- Aprile, E. et al. [XENON100 Collaboration] Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data. Phys. Rev. D 2011, 84, 061101. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; et al. Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100. Phys. Rev. D 2017, 96, 022008. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON collaboration] Search for magnetic inelastic dark matter with XENON100. J. Cosmol. Astropart. Phys. 2017, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Arneodo, F.; Barge, D.; et al. Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T. Phys. Rev. Lett. 2019, 123, 241803. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Search for inelastic scattering of WIMP dark matter in XENON1T. Phys. Rev. D 2021, 103, 063028. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Antochi, V.C.; Arneodo, F.; Baudis, L.; et al. First results on the scalar WIMP-pion coupling, using the XENON1T experiment. Phys. Rev. Lett. 2019, 122, 071301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; et al. Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector. Phys. Rev. D 2017, 96, 042004. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [The XENON Collaboration] Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data. Science 2015, 349, 851–854. [Google Scholar]
- Aprile, E. et al. [The XENON100 Collaboration] First Axion Results from the XENON100 Experiment. Phys. Rev. D 2014, 90, 062009, Erratum: Phys. Rev. D 2017, 95, 029904. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Angevaare, J.R.; Arneodo, F.; et al. Excess electronic recoil events in XENON1T. Phys. Rev. D 2020, 102, 072004. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON collaboration] Search for Bosonic Super-WIMP Interactions with the XENON100 Experiment. Phys. Rev. D 2017, 96, 122002. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Arneodo, F.; Barge, D.; et al. Light Dark Matter Search with Ionization Signals in XENON1T. Phys. Rev. Lett. 2019, 123, 251801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E. et al. [The XENON Collaboration] Search for Event Rate Modulation in XENON100 Electronic Recoil Data. Phys. Rev. Lett. 2015, 115, 091302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E. et al. [The XENON Collaboration] Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data. Phys. Rev. Lett. 2017, 118, 101101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Ahmed Maouloud, S.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Andaloro, S.; Antochi, V.C.; Angelino, E.; et al. Search for Coherent Elastic Scattering of Solar 8B Neutrinos in the XENON1T Dark Matter Experiment. Phys. Rev. Lett. 2021, 126, 091301. [Google Scholar] [CrossRef] [PubMed]
- Angle, J. et al. [The XENON Collaboration] First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory. Phys. Rev. Lett. 2008, 100, 021303. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration] XENON100 Dark Matter Results from a Combination of 477 Live Days. Phys. Rev. D 2016, 94, 122001. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration] Low-mass dark matter search using ionization signals in XENON100. Phys. Rev. D 2016, 94, 092001, Erratum: Phys. Rev. D 2017, 95, 059901. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P. et al. [The DarkSide Collaboration] Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 081307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhameed, A.H. et al. [CRESST Collaboration] First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 2019, 100, 102002. [Google Scholar] [CrossRef] [Green Version]
- Cui, X. et al. [PandaX-II Collaboration] Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerib, D.S.; Alsum, S.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 21303. [Google Scholar] [CrossRef] [PubMed]
- Ruppin, F.; Billard, J.; Figueroa-Feliciano, E.; Strigari, L. Complementarity of dark matter detectors in light of the neutrino background. Phys. Rev. D 2014, 90, 83510. [Google Scholar] [CrossRef] [Green Version]
- Yellin, S. Finding an upper limit in the presence of unknown background. Phys. Rev. 2002, D66, 32005. [Google Scholar] [CrossRef] [Green Version]
- Angle, J. et al. [The XENON10 Collaboration] Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment. Phys. Rev. Lett. 2008, 101, 91301. [Google Scholar] [CrossRef] [Green Version]
- Angle, J.; Aprile, E.; Arneodo, F.; Baudis, L.; Bernstein, A.; Bolozdynya, A.; Brusov, P.; Coelho, L.C.C.; Dahl, C.E.; DeViveiros, L.; et al. Constraints on inelastic dark matter from XENON10. Phys. Rev. D 2009, 80, 115005. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; Di Marco, A.; He, H.L.; et al. First model independent results from DAMA/LIBRA-phase2. Universe 2018, 4, 116. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [The XENON100 Collaboration] First Dark Matter Results from the XENON100 Experiment. Phys. Rev. Lett. 2010, 105, 131302. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON100 Collaboration] Likelihood Approach to the First Dark Matter Results from XENON100. Phys. Rev. D 2011, 84, 052003. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [The XENON100 Collaboration] Response of the XENON100 Dark Matter Detector to Nuclear Recoils. Phys. Rev. D 2013, 88, 012006. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; et al. Signal Yields of keV Electronic Recoils and Their Discrimination from Nuclear Recoils in Liquid Xenon. Phys. Rev. D 2018, 97, 092007. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] The neutron background of the XENON100 dark matter search experiment. J. Phys. G 2013, 40, 115201. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Intrinsic backgrounds from Rn and Kr in the XENON100 experiment. Eur. Phys. J. C 2018, 78, 132. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [The XENON100 Collaboration] Analysis of the XENON100 Dark Matter Search Data. Astropart. Phys. 2014, 54, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration] Dark Matter Results from 100 Live Days of XENON100 Data. Phys. Rev. Lett. 2011, 107, 131302. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration] Dark Matter Results from 225 Live Days of XENON100 Data. Phys. Rev. Lett. 2012, 109, 181301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration] Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys. Rev. Lett. 2013, 111, 021301. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; d’Angelo, S.; Di Marco, A.; et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 2013, 73, 2648. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [The XENON Collaboration] Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220. Phys. Rev. D 2017, 95, 072008. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M.L.; Bruno, G. Characterization of a deuterium–deuterium plasma fusion neutron generator. Nucl. Instrum. Meth. A 2018, 879, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. XENON1T dark matter data analysis: Signal and background models and statistical inference. Phys. Rev. D 2019, 99, 112009. [Google Scholar] [CrossRef] [Green Version]
- Feldman, G.J.; Cousins, R.D. A Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 1998, 57, 3873–3889. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Antochi, V.C.; Arneodo, F.; Baudis, L.; et al. Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T. Phys. Rev. Lett. 2019, 122, 141301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redondo, J. Solar axion flux from the axion-electron coupling. J. Cosmol. Astropart. Phys. 2013, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, S. A Proposal to search for a monochromatic component of solar axions using Fe-57. Phys. Rev. Lett. 1995, 75, 3222–3225. [Google Scholar] [CrossRef] [Green Version]
- Primakoff, H. Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 1951, 81, 899. [Google Scholar] [CrossRef]
- Córsico, A.H.; Althaus, L.G.; Miller Bertolami, M.M.; Kepler, S.O. Pulsating white dwarfs: New insights. Astron. Astrophys. Rev. 2019, 27, 7. [Google Scholar] [CrossRef] [Green Version]
- Bell, N.F.; Gorchtein, M.; Ramsey-Musolf, M.J.; Vogel, P.; Wang, P. Model independent bounds on magnetic moments of Majorana neutrinos. Phys. Lett. B 2006, 642, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Córsico, A.H.; Althaus, L.G.; Miller Bertolami, M.M.; Kepler, S.O.; García-Berro, E. Constraining the neutrino magnetic dipole moment from white dwarf pulsations. J. Cosmol. Astropart. Phys. 2014, 8, 54. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gangi, P., on behalf of the XENON Collaboration. The Xenon Road to Direct Detection of Dark Matter at LNGS: The XENON Project. Universe 2021, 7, 313. https://doi.org/10.3390/universe7080313
Di Gangi P on behalf of the XENON Collaboration. The Xenon Road to Direct Detection of Dark Matter at LNGS: The XENON Project. Universe. 2021; 7(8):313. https://doi.org/10.3390/universe7080313
Chicago/Turabian StyleDi Gangi, Pietro on behalf of the XENON Collaboration. 2021. "The Xenon Road to Direct Detection of Dark Matter at LNGS: The XENON Project" Universe 7, no. 8: 313. https://doi.org/10.3390/universe7080313
APA StyleDi Gangi, P., on behalf of the XENON Collaboration. (2021). The Xenon Road to Direct Detection of Dark Matter at LNGS: The XENON Project. Universe, 7(8), 313. https://doi.org/10.3390/universe7080313