ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity
Abstract
1. Introduction
2. Field Equations and Vacuum Solution in Massive Gravity
3. Periastron Advance in Massive Gravity
4. Geodesic Equations and Effective Potential
5. ISCOs/OSCOs in Massive Gravity
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freedman, W.L.; Turner, M.S. Measuring and understanding the universe. Rev. Mod. Phys. 2003, 75, 1433. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Einstein, A. The Foundation of the General Theory of Relativity. Ann. Phys. 1916, 49, 769. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of Gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Brans, C.H. Mach’s Principle and a Relativistic Theory of Gravitation. II. Phys. Rev. 1962, 125, 2194. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s principle and invariance under transformation of units. Phys. Rev. 1962, 125, 2163. [Google Scholar] [CrossRef]
- Langlois, D. Brane cosmology: An Introduction. Prog. Theor. Phys. Suppl. 2003, 148, 181. [Google Scholar] [CrossRef]
- Maartens, R. Brane world gravity. Living Rev. Rel. 2004, 7, 7. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- de Rham, C.; Gabadadze, G. Generalization of the Fierz-Pauli Action. Phys. Rev. D 2010, 82, 044020. [Google Scholar] [CrossRef]
- de Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.G.; Tannukij, L.; Wongjun, P. A class of black holes in dRGT massive gravity and their thermodynamical properties. Eur. Phys. J. C 2016, 76, 119. [Google Scholar] [CrossRef]
- Schwarzschild, K. On the Gravitational Field of a Mass Point According to Einstein’s Theory; Sitzungsberichte der Preussischen Akademie der Wissenschaften: Berlin, Germany, 1916; p. 189. [Google Scholar]
- Panpanich, S.; Burikham, P. Fitting rotation curves of galaxies by de Rham-Gabadadze-Tolley massive gravity. Phys. Rev. D 2018, 98, 064008. [Google Scholar] [CrossRef]
- Ashtekar, A. Implications of a positive cosmological constant for general relativity. Rept. Prog. Phys. 2017, 80, 102901. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Innermost and outermost stable circular orbits in the presence of a positive cosmological constant. Phys. Rev. D 2020, 101, 024050. [Google Scholar] [CrossRef]
- Rezzolla, L.; Zanotti, O.; Font, J.A. Dynamics of thick discs around Schwarzschild–de Sitter black holes. Astron. Astrophys. 2003, 412, 603. [Google Scholar] [CrossRef]
- Stuchlik, Z. Influence of the relict cosmological constant on accretion discs. Mod. Phys. Lett. A 2005, 20, 561. [Google Scholar] [CrossRef]
- Stuchlik, Z.; Schee, J. Influence of the cosmological constant on the motion of Magellanic Clouds in the gravitational field of Milky Way. JCAP 2011, 2011, 018. [Google Scholar] [CrossRef]
- Sarkar, T.; Ghosh, S.; Bhadra, A. Newtonian analogue of Schwarzschild de-Sitter spacetime: Influence on the local kinematics in galaxies. Phys. Rev. D 2014, 90, 063008. [Google Scholar] [CrossRef]
- Perez, D.; Romero, G.E.; Bergliaffa, S.E.P. Accretion disks around black holes in modified strong gravity. Astron. Astrophys. 2013, 551, A4. [Google Scholar] [CrossRef]
- Lee, H.C.; Han, Y.J. Innermost stable circular orbit of Kerr-MOG black hole. Eur. Phys. J. C 2017, 77, 655. [Google Scholar] [CrossRef]
- Koch, B.; Reyes, I.A.; Rincon, A. A scale dependent black hole in three-dimensional space–time. Class. Quant. Grav. 2016, 33, 225010. [Google Scholar] [CrossRef]
- Rincon, A.; Koch, B.; Reyes, I. BTZ black hole assuming running couplings. J. Phys. Conf. Ser. 2017, 831, 012007. [Google Scholar] [CrossRef]
- Rincon, A.; Contreras, E.; Bargueño, P.; Koch, B.; Panotopoulos, G.; Hernandez-Arboleda, A. Scale dependent three-dimensional charged black holes in linear and non-linear electrodynamics. Eur. Phys. J. C 2017, 77, 494. [Google Scholar] [CrossRef]
- Rincon, A.; Panotopoulos, G. Quasinormal modes of scale dependent black holes in (1 + 2)-dimensional Einstein-power-Maxwell theory. Phys. Rev. D 2018, 97, 024027. [Google Scholar] [CrossRef]
- Contreras, E.; Rincon, A.; Koch, B.; Bargueño, P. Scale-dependent polytropic black hole. Eur. Phys. J. C 2018, 78, 246. [Google Scholar] [CrossRef]
- Rincon, A.; Koch, B. Scale-dependent rotating BTZ black hole. Eur. Phys. J. C 2018, 78, 1022. [Google Scholar] [CrossRef]
- Rincon, A.; Contreras, E.; Bargueño, P.; Koch, B.; Panotopoulos, G. Scale-dependent (2 + 1)-dimensional electrically charged black holes in Einstein-power-Maxwell theory. Eur. Phys. J. C 2018, 78, 641. [Google Scholar] [CrossRef]
- Rincon, A.; Contreras, E.; Bargueño, P.; Koch, B. Scale-dependent planar Anti-de Sitter black hole. Eur. Phys. J. Plus 2019, 134, 557. [Google Scholar] [CrossRef]
- Contreras, E.; Rincon, A.; Panotopoulos, G.; Bargueño, P.; Koch, B. Black hole shadow of a rotating scale–dependent black hole. Phys. Rev. D 2020, 101, 064053. [Google Scholar] [CrossRef]
- Rincon, A.; Panotopoulos, G. Scale-dependent slowly rotating black holes with flat horizon structure. Phys. Dark Univ. 2020, 30, 100725. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincon, A. Quasinormal spectra of scale-dependent Schwarzschild–de Sitter black holes. Phys. Dark Univ. 2021, 31, 100743. [Google Scholar] [CrossRef]
- Rincon, A.; Villanueva, J.R. The Sagnac effect on a scale-dependent rotating BTZ black hole background. Class. Quant. Grav. 2020, 37, 175003. [Google Scholar] [CrossRef]
- Fathi, M.; Rincon, A.; Villanueva, J.R. Photon trajectories on a first order scale-dependent static BTZ black hole. Class. Quant. Grav. 2020, 37, 075004. [Google Scholar] [CrossRef]
- Contreras, E.; Rincon, A.; Bargueno, P. Five-dimensional scale-dependent black holes with constant curvature and Solv horizons. Eur. Phys. J. C 2020, 80, 367. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincon, A.; Lopes, I. Interior solutions of relativistic stars in the scale-dependent scenario. Eur. Phys. J. C 2020, 80, 318. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincon, A.; Lopes, I. Interior solutions of relativistic stars with anisotropic matter in scale-dependent gravity. Eur. Phys. J. C 2021, 81, 63. [Google Scholar] [CrossRef]
- Canales, F.; Koch, B.; Laporte, C.; Rincon, A. Cosmological constant problem: Deflation during inflation. JCAP 2020, 2001, 021. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Koch, B.; Laporte, C.; Rincón, Á. Can scale-dependent cosmology alleviate the H0 tension? JCAP 2021, 6, 019. [Google Scholar] [CrossRef]
- Cai, R.G. Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D 2002, 65, 084014. [Google Scholar] [CrossRef]
- Berezhiani, L.; Chkareuli, G.; de Rham, C.; Gabadadze, G.; Tolley, A.J. On Black Holes in Massive Gravity. Phys. Rev. D 2012, 85, 044024. [Google Scholar] [CrossRef]
- Burikham, P.; Harko, T.; Lake, M.J. Mass bounds for compact spherically symmetric objects in generalized gravity theories. Phys. Rev. D 2016, 94, 064070. [Google Scholar] [CrossRef]
- Kareeso, P.; Burikham, P.; Harko, T. Mass-radius ratio bounds for compact objects in Massive Gravity theory. Eur. Phys. J. C 2018, 78, 941. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Wongjun, P. Greybody factor for black string in dRGT massive gravity. Eur. Phys. J. C 2019, 79, 330. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschits, E.M. The Classical Theory of Fields, 3rd ed.; Course of Theoretical Physics Volume 2; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Jafari, G.; Setare, M.R.; Bakhtiarizadeh, H.R. Static spherically symmetric black holes of de Rham–Gabadadze–Tolley massive gravity in arbitrary dimensions. Phys. Lett. B 2017, 773, 395–400. [Google Scholar] [CrossRef]
- Li, P.; Li, X.z.; Xi, P. Black hole solutions in de Rham-Gabadadze-Tolley massive gravity. Phys. Rev. D 2016, 93, 064040. [Google Scholar] [CrossRef]
- Koyama, K.; Niz, G.; Tasinato, G. Analytic solutions in non-linear massive gravity. Phys. Rev. Lett. 2011, 107, 131101. [Google Scholar] [CrossRef]
- Koyama, K.; Niz, G.; Tasinato, G. Strong interactions and exact solutions in non-linear massive gravity. Phys. Rev. D 2011, 84, 064033. [Google Scholar] [CrossRef]
- Adkins, G.S.; McDonnell, J. Orbital precession due to central-force perturbations. Phys. Rev. D 2007, 75, 082001. [Google Scholar] [CrossRef]
- Zakharov, A. Constraints on alternative theories of gravity with observations of the Galactic Center. EPJ Web Conf. 2018, 191, 01010. [Google Scholar] [CrossRef][Green Version]
- Clifton, T.; Carrilho, P.; Fernandes, P.G.S.; Mulryne, D.J. Observational Constraints on the Regularized 4D Einstein-Gauss-Bonnet Theory of Gravity. Phys. Rev. D 2020, 102, 084005. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N.P. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. Roy. Astron. Soc. 2013, 432, 3431. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Cardoso, V.; Clénet, Y.; de Zeeuw, P.T.; Dexter, J.; et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar]
- García, A.; Hackmann, E.; Kunz, J.; Lämmerzahl, C.; Macías, A. Motion of test particles in a regular black hole space–time. J. Math. Phys. 2015, 56, 032501. [Google Scholar] [CrossRef]
Object | M | |||||||
---|---|---|---|---|---|---|---|---|
Hydrogen atom | ||||||||
Earth | ||||||||
Sun | ||||||||
Stellar association | ||||||||
Open stellar cluster | ||||||||
Globular cluster | ||||||||
Saggitarius A* | ||||||||
Dwarf galaxies | ||||||||
Spiral galaxies | ||||||||
Galaxy clusters |
Object | M | Astrophysical Relevance? | |
---|---|---|---|
Hydrogen atom | Subatomic scales | ||
Earth | Size of Solar System | ||
Sun | Rogue planets | ||
Stellar association | Rogue planets | ||
Open stellar cluster | Size of most globular clusters | ||
Globular cluster | Open cluster spacing | ||
Saggitarius A* | Globular cluster spacing | ||
Dwarf galaxies | Size of galaxy | ||
Spiral galaxies | Inter-galactic spacing | ||
Galaxy clusters | Size of galaxy cluster |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rincón, Á.; Panotopoulos, G.; Lopes, I.; Cruz, N. ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe 2021, 7, 278. https://doi.org/10.3390/universe7080278
Rincón Á, Panotopoulos G, Lopes I, Cruz N. ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe. 2021; 7(8):278. https://doi.org/10.3390/universe7080278
Chicago/Turabian StyleRincón, Ángel, Grigoris Panotopoulos, Ilídio Lopes, and Norman Cruz. 2021. "ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity" Universe 7, no. 8: 278. https://doi.org/10.3390/universe7080278
APA StyleRincón, Á., Panotopoulos, G., Lopes, I., & Cruz, N. (2021). ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe, 7(8), 278. https://doi.org/10.3390/universe7080278