# Spin Distribution for the ’t Hooft–Polyakov Monopole in the Geometric Theory of Defects

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. The ’t Hooft–Polyakov Monopole

## 3. Distributions of Spins

## 4. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Landau, L.D.; Lifshits, E.M. Theory of Elasticity; Pergamon: Oxford, UK, 1970. [Google Scholar]
- Kosevich, A.M. Physical Mechanics of Real Crystals; Naukova Dumka: Kiev, Ukraine, 1981. (In Russian) [Google Scholar]
- Katanaev, M.O.; Volovich, I.V. Theory of defects in solids and three-dimensional gravity. Ann. Phys.
**1992**, 216, 1–28. [Google Scholar] [CrossRef] - Katanaev, M.O. Geometric theory of defects. Phys. Uspekhi
**2005**, 48, 675–701. [Google Scholar] [CrossRef] [Green Version] - Azevedo, S. Charged particle with magnetic moment in the background of line topological defect. Phys. Lett.
**2003**, A307, 65–68. [Google Scholar] [CrossRef] - Furtado, C.; Moraes, F.; Carvalho, A.D.M. Geometric phases in graphitic cones. Phys. Lett.
**2008**, 372, 5368–5371. [Google Scholar] [CrossRef] [Green Version] - Katanaev, M.O. Torsion and Burgers vector of a tube dislocation. Proc. Sci.
**2010**, 2010, 1–7. [Google Scholar] [CrossRef] [Green Version] - Lazar, M.; Hehl, F. Cartan’s spiral staircase in physics and, in particular, in the gauge theory of dislocations. Found. Phys.
**2010**, 40, 1298–1325. [Google Scholar] [CrossRef] [Green Version] - Randono, C.G.; Hughes, N.L. Torsional monopoles and torqued geometries in gravity and condensed matter. Phys. Rev. Lett.
**2011**, 106, 161102. [Google Scholar] [CrossRef] [Green Version] - Boehmer, C.G.; Obukhov, Y.N. A gauge theoretic approach to elasticity with microrotations. Proc. R. Soc. Lond.
**2012**, 468, 1391–1407. [Google Scholar] - Bakke, K.; Furtado, C. Abelian geometric phase due to the presence of an edge dislocation. Phys. Rev.
**2013**, 87, 012130. [Google Scholar] [CrossRef] - Katanaev, M.O. Rotational elastic waves in double wall tube. Phys. Lett. A
**2015**, 379, 1544–1548. [Google Scholar] [CrossRef] [Green Version] - Katanaev, M.O. Rotational elastic waves in cylindrical waveguide with wedge dislocation. J. Phys. A
**2016**, 49, 085202. [Google Scholar] [CrossRef] [Green Version] - Ciappina, M.F.; Iorio, A.; Pais, P.; Zampeli, A. Torsion in quantum field theory through time-loops on dirac materials. Phys. Rev.
**2020**, 101, 036021. [Google Scholar] [CrossRef] [Green Version] - Katanaev, M.O. Chern–Simons term in the geometric theory of defects. Phys. Rev. D
**2017**, 96, 84054. [Google Scholar] [CrossRef] [Green Version] - Katanaev, M.O. Description of disclinations and dislocations by the Chern–Simons action for SO(3) connection. Phys. Part. Nucl.
**2018**, 49, 890–893. [Google Scholar] [CrossRef] - Katanaev, M.O. Chern–Simons action and disclinations. Proc. Steklov Inst. Math.
**2018**, 301, 114–133. [Google Scholar] [CrossRef] - Katanaev, M.O.; Volkov, B.O. Point disclinations in the Chern–Simons geometric theory of defects. Mod. Phys. Lett.
**2020**, 34, 2150012. [Google Scholar] [CrossRef] - Katanaev, M.O. Disclinations in the geometric theory of defects. Tr. Mat. Inst. Im. VA Steklova
**2021**, 313, 87–108. [Google Scholar] - Katanaev, M.O. The ’t Hooft–Polyakov monopole in the geometric theory of defects. Mod. Phys. Lett.
**2020**, 34, 2050126. [Google Scholar] [CrossRef] - ’t Hooft, G. Magnetic monopoles in unified gauge theories. Nucl. Phys. B
**1974**, 79, 276–284. [Google Scholar] [CrossRef] [Green Version] - Polyakov, A.M. Particle spectrum in the quantum field theory. JETP Lett.
**1974**, 20, 194–195. [Google Scholar] - Manton, N.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Rubakov, V.A. Classical Theory of Gauge Fields; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Shnir, Y. Magnetic Monopoles; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Prasad, M.K.; Sommerfield, C.H. Exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett.
**1975**, 35, 760–762. [Google Scholar] [CrossRef] - Bogomolny, E.B. The stability of classical solutions. Sov. J. Nucl. Phys.
**1976**, 24, 449–454. [Google Scholar] - Singleton, D. Exact Schwarzschild-like solution for Yang-Mills theories. Phys. Rev. D
**1995**, 51, 5911–5914. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lunev, F.A. Three-dimensional Yang-Mills-Higgs theory in gauge-invariant variables. Phys. Lett. B
**1992**, 295, 99–103. [Google Scholar] [CrossRef] - Lunev, F.A. Three-dimensional Yang-Mills-Higgs equations in gauge-invariant variables. Theor. Math. Phys.
**1993**, 94, 48–54. [Google Scholar] [CrossRef] - Lunev, F.A. Reformulation of QCD in the language of general relativity. J. Math. Phys.
**1996**, 37, 5351. [Google Scholar] [CrossRef] [Green Version] - Protogenov, A.P. Exact Classical Solutions of Yang-Mills Sourceless Equations. Phys. Lett. B
**1977**, 67, 62–64. [Google Scholar] [CrossRef] - Wilson, K.G. Confinement of quarks. Phys. Rev. D
**1974**, 10, 2445–2459. [Google Scholar] [CrossRef] - Makeenko, Y. Methods of Contemporary Gauge Theory; Cambridge University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Katanaev, M.O. Geometric methods in mathematical physics. Ver. 4. arXiv
**2020**, arXiv:1311.0733. [Google Scholar]

**Figure 1.**Spin distributions for the Bogomol’nyi–Prasad–Sommerfield solution for different ranges of coordinates: ${y}_{1},z\in [-1,1]$ (

**a**); ${y}_{1},z\in [-10,10]$ (

**b**); and ${y}_{1},z\in [-1000,1000]$ (

**c**). The plots are drawn numerically for $e=1$ and $l=1$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Katanaev, M.O.
Spin Distribution for the ’t Hooft–Polyakov Monopole in the Geometric Theory of Defects. *Universe* **2021**, *7*, 256.
https://doi.org/10.3390/universe7080256

**AMA Style**

Katanaev MO.
Spin Distribution for the ’t Hooft–Polyakov Monopole in the Geometric Theory of Defects. *Universe*. 2021; 7(8):256.
https://doi.org/10.3390/universe7080256

**Chicago/Turabian Style**

Katanaev, Mikhail O.
2021. "Spin Distribution for the ’t Hooft–Polyakov Monopole in the Geometric Theory of Defects" *Universe* 7, no. 8: 256.
https://doi.org/10.3390/universe7080256