The Ionization Energies of Dust-Forming Metal Oxide Clusters
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Vertical Ionization
3.2. Adiabatic Ionization
3.2.1. Magnesia Cations
3.2.2. Silicon Monoxide Cations
3.2.3. Alumina Cations
3.2.4. Titania Cations
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Höfner, S.; Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Rev. 2018, 26. [Google Scholar] [CrossRef] [Green Version]
- Henning, T.; Begemann, B.; Mutschke, H.; Dorschner, J. Optical properties of oxide dust grains. Astron. Astrophys. Suppl. Ser. 1995, 112, 143. [Google Scholar]
- Zinner, E.K. Presolar Grains. Treatise Geochem. 2003, 1, 711. [Google Scholar] [CrossRef]
- Nittler, L.R.; Alexander, C.M.O.; Stroud, R.M. High Abundance of Presolar Materials in CO3.0 Chondrite Dominion Range 08006. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013; p. 2367. [Google Scholar]
- Hoppe, P.; Leitner, J.; Kodolányi, J. New Constraints on the Abundances of Silicate And Oxide Stardust from Supernovae in the Acfer 094 Meteorite. Astrophys. J. 2015, 808, L9. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, C.; Molster, F.J.; Dorschner, J.; Henning, T.; Mutschke, H.; Waters, L.B.F.M. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys. 1998, 339, 904–916. [Google Scholar]
- Min, M.; Waters, L.B.F.M.; de Koter, A.; Hovenier, J.W.; Keller, L.P.; Markwick-Kemper, F. The shape and composition of interstellar silicate grains. Astron. Astrophys. 2007, 462, 667–676. [Google Scholar] [CrossRef]
- Kemper, F.; Waters, L.B.F.M.; de Koter, A.; Tielens, A.G.G.M. Crystallinity versus mass-loss rate in asymptotic giant branch stars. Astron. Astrophys. 2001, 369, 132–141. [Google Scholar] [CrossRef]
- Goumans, T.P.M.; Bromley, S.T. Efficient nucleation of stardust silicates via heteromolecular homogeneous condensation. Mon. Not. R. Astron. Soc. 2012, 420, 3344–3349. [Google Scholar] [CrossRef] [Green Version]
- Escatllar, A.M.; Lazaukas, T.; Woodley, S.M.; Bromley, S.T. Structure and Properties of Nanosilicates with Olivine (Mg2SiO4)N and Pyroxene (MgSiO3)N Compositions. ACS Earth Space Chem. 2019, 3, 2390–2403. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, F.T.; Nuth, J.A. Vapor Pressure of Silicon Monoxide. J. Chem. Eng. Data 2008, 53, 2824–2832. [Google Scholar] [CrossRef]
- Gail, H.P.; Wetzel, S.; Pucci, A.; Tamanai, A. Seed particle formation for silicate dust condensation by SiO nucleation. Astron. Astrophys. 2013, 555, A119. [Google Scholar] [CrossRef] [Green Version]
- Norris, B.R.M.; Tuthill, P.G.; Ireland, M.J.; Lacour, S.; Zijlstra, A.A.; Lykou, F.; Evans, T.M.; Stewart, P.; Bedding, T.R. A close halo of large transparent grains around extreme red giant stars. Nature 2012, 484, 220–222. [Google Scholar] [CrossRef] [Green Version]
- Höfner, S.; Gautschy-Loidl, R.; Aringer, B.; Jørgensen, U.G. Dynamic model atmospheres of AGB stars. III. Effects of frequency-dependent radiative transfer. Astron. Astrophys. 2003, 399, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Boulangier, J.; Gobrecht, D.; Decin, L.; de Koter, A.; Yates, J. Developing a self-consistent AGB wind model: II. Non-classical, non-equilibrium polymer nucleation in a chemical mixture. Mon. Not. R. Astron. Soc. 2019. [Google Scholar] [CrossRef]
- Posch, T.; Kerschbaum, F.; Mutschke, H.; Fabian, D.; Dorschner, J.; Hron, J. On the origin of the 13 mu m feature. A study of ISO-SWS spectra of oxygen-rich AGB stars. Astron. Astrophys. 1999, 352, 609–618. [Google Scholar]
- Posch, T.; Kerschbaum, F.; Fabian, D.; Mutschke, H.; Dorschner, J.; Tamanai, A.; Henning, T. Infrared Properties of Solid Titanium Oxides: Exploring Potential Primary Dust Condensates. Astrophys. J. Suppl. Ser. 2003, 149, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Sloan, G.C.; Kraemer, K.E.; Goebel, J.H.; Price, S.D. Guilt by Association: The 13 Micron Dust Emission Feature and Its Correlation to Other Gas and Dust Features. Astrophys. J. 2003, 594, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Koehler, T.M.; Gail, H.P.; Sedlmayr, E. MgO dust nucleation in M-Stars: Calculation of cluster properties and nucleation rates. Astron. Astrophys. 1997, 320, 553–567. [Google Scholar]
- Bromley, S.T.; Gomez Martin, J.C.; Plane, J.M.C. Under what conditions does (SiO)N nucleation occur? A bottom-up kinetic modelling evaluation. Phys. Chem. Chem. Phys. 2016, 18, 26913–26922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decin, L.; Richards, A.M.S.; Waters, L.B.F.M.; Danilovich, T.; Gobrecht, D.; Khouri, T.; Homan, W.; Bakker, J.M.; Van de Sande, M.; Nuth, J.A.; et al. Study of the aluminium content in AGB winds using ALMA - Indications for the presence of gas-phase (Al2O3)n clusters. Astron. Astrophys. 2017, 608, A55. [Google Scholar] [CrossRef] [Green Version]
- Demyk, K.; van Heijnsbergen, D.; von Helden, G.; Meijer, G. Experimental study of gas phase titanium and aluminum oxide clusters. Astron. Astrophys. 2004, 420, 547–552. [Google Scholar] [CrossRef]
- Haertelt, M.; Fielicke, A.; Meijer, G.; Kwapien, K.; Sierka, M.; Sauer, J. Structure determination of neutral MgO clusters-hexagonal nanotubes and cages. PCCP 2012, 14, 2849–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoca, M.; Langer, J.; Harding, D.J.; Palagin, D.; Reuter, K.; Dopfer, O.; Fielicke, A. Vibrational spectra and structures of bare and Xe-tagged cationic SinOm+ clusters. J. Chem. Phys. 2014, 141, 104313. [Google Scholar] [CrossRef]
- Bertschinger, E.; Chevalier, R.A. A periodic shock wave model for Mira variable atmospheres. Astrophys. J. 1985, 299, 167–190. [Google Scholar] [CrossRef]
- Mathis, J.S.; Mezger, P.G.; Panagia, N. Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. Astron. Astrophys. 1983, 500, 259–276. [Google Scholar]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Corà, F. The performance of hybrid density functionals in solid state chemistry: The case of BaTiO3. Mol. Phys. 2005, 103, 2483–2496. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revision A.1, 2010; Gaussian Inc.: Wallingford, UK, 2009. [Google Scholar]
- Chen, M.; Felmy, A.R.; Dixon, D.A. Structures and Stabilities of (MgO)n Nanoclusters. J. Phys. Chem. A 2014, 118, 3136–3146. [Google Scholar] [CrossRef]
- Li, R.; Cheng, L. Structural determination of (Al2O3)n (n = 1–7) clusters based on density functional calculation. Comput. Theor. Chem. 2012, 996, 125–131. [Google Scholar] [CrossRef]
- Gobrecht, D.; Decin, L.; Cristallo, S.; Bromley, S.T. A global optimisation study of the low-lying isomers of the alumina octomer (Al2O3)8. Chem. Phys. Lett. 2018, 711, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Lamiel-Garcia, O.; Cuko, A.; Calatayud, M.; Illas, F.; Bromley, S.T. Predicting size-dependent emergence of crystallinity in nanomaterials: Titania nanoclusters versus nanocrystals. Nanoscale 2017, 9, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalleska, N.; Armentrout, P. Guided ion beam studies of reactions of alkaline earth ions with O2. Int. J. Mass Spectrom. Ion Process. 1994, 134, 203–212. [Google Scholar] [CrossRef]
- Lemmon, E.W.; McLinden, M.O.; Friend, D.G. Thermophysical properties of fluid systems. In NIST Chemistry Webbook, NIST Standard Reference Database; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1998; Volume 69. [Google Scholar]
- Armentrout, P.B.; Halle, L.F.; Beauchamp, J.L. Reaction of Cr+, Mn+, Fe+, Co+, and Ni+ with O2 and N2O. Examination of the translational energy dependence of the cross sections of endothermic reactions. J. Chem. Phys. 1982, 76, 2449–2457. [Google Scholar] [CrossRef] [Green Version]
- Terzi, N.; Yaghlane, S.B.; Jaïdane, N.E.; Chambaud, G.; Hochlaf, M. Neutral and Multicharged Ions of Small Aluminum Oxides: Structures, Spectroscopy, and Energetics. J. Phys. Chem. A 2020, 124, 9021–9034. [Google Scholar] [CrossRef]
- Dehnicke, K.; Weidlein, J. Existence of the VO, TiO2+ and ZrO2+ Cations. Angew. Chem. Int. Ed. Engl. 1966, 5, 1041. [Google Scholar] [CrossRef]
- Gobrecht, D.; Cherchneff, I.; Sarangi, A.; Plane, J.M.C.; Bromley, S.T. Dust formation in the oxygen-rich AGB star IK Tauri. Astron. Astrophys. 2016, 585, A6. [Google Scholar] [CrossRef] [Green Version]
- Van de Sande, M.; Millar, T.J. The Role of Internal Photons on the Chemistry of the Circumstellar Envelopes of AGB Stars. Astrophys. J. 2019, 873, 36. [Google Scholar] [CrossRef]
(MgO)n | (SiO)n | (Al2O3)n | (TiO2)n | |||||
---|---|---|---|---|---|---|---|---|
n | Ev | Ea | Ev | Ea | Ev | Ea | Ev | Ea |
1 | 7.86 | 7.75 | 11.49 | 11.49 | 9.39 | 9.15 | 9.81 | 9.67 |
2 | 7.82 | 7.56 | 9.22 | 9.21 | 9.81 | 9.52 | 10.50 | 10.23 |
3 | 8.19 | 8.18 | 9.01 | 8.74 | 9.98 | 9.45 | 9.92 | 9.77 |
4 | 7.90 | 7.37 | 8.39 | 8.34 | 9.88 | 9.52 | 10.54 | 10.43 |
5 | 7.61 | 7.09 | 8.20 | 7.66 | 9.74 | 9.48 | 10.25 | 9.32 |
6 | 7.94 | 7.63 | 7.89 | 7.30 | 9.73 | 9.54 | 10.32 | 9.34 |
7 | 7.74 | 7.23 | 8.05 | 7.35 | 9.72 | 9.48 | 9.40 | 9.27 |
8 | 7.54 | 7.16 | 7.04 | 6.62 | 9.13 | 8.90 | 10.08 | 9.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobrecht, D.; Sindel, J.P.; Lecoq-Molinos, H.; Decin, L. The Ionization Energies of Dust-Forming Metal Oxide Clusters. Universe 2021, 7, 243. https://doi.org/10.3390/universe7070243
Gobrecht D, Sindel JP, Lecoq-Molinos H, Decin L. The Ionization Energies of Dust-Forming Metal Oxide Clusters. Universe. 2021; 7(7):243. https://doi.org/10.3390/universe7070243
Chicago/Turabian StyleGobrecht, David, Jan Philip Sindel, Helena Lecoq-Molinos, and Leen Decin. 2021. "The Ionization Energies of Dust-Forming Metal Oxide Clusters" Universe 7, no. 7: 243. https://doi.org/10.3390/universe7070243
APA StyleGobrecht, D., Sindel, J. P., Lecoq-Molinos, H., & Decin, L. (2021). The Ionization Energies of Dust-Forming Metal Oxide Clusters. Universe, 7(7), 243. https://doi.org/10.3390/universe7070243