Ellis–Bronnikov Wormholes in Asymptotically Safe Gravity
Abstract
:1. Introduction
2. The Ellis–Bronnikov Wormhole Solution in ASG
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 1973, 14, 104. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Pol. B 1973, 4, 251. [Google Scholar]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, M.; Liempi, L.; Rodríguez, P. Morris-Thorne wormholes in static pseudospherically symmetric spacetimes. Phys. Rev. D 2015, 91, 124039. [Google Scholar] [CrossRef] [Green Version]
- Garattini, R. Casimir wormholes. Eur. Phys. J. C 2019, 79, 951. [Google Scholar]
- Jusufi, K.; Channuie, P.; Jamil, M. Traversable wormholes supported by GUP corrected Casimir energy. Eur. Phys. J. C 2020, 80, 127. [Google Scholar] [CrossRef]
- Alencar, G.; Bezerra, V.B.; Muniz, C.R. Casimir Wormholes in (2+ 1) Dimensions with Applications to the Graphene. arXiv 2021, arXiv:2104.13952. [Google Scholar]
- Oliveira, P.H.F.; Alencar, G.; Jardim, I.C.; Landim, R.R. Traversable Casimir Wormholes in D Dimensions. arXiv 2021, arXiv:2107.00605. [Google Scholar]
- Martinez, C.; Nozawa, M. Static spacetimes haunted by a phantom scalar field. I. Classification and global structure in the massless case. Phys. Rev. D 2021, 103. [Google Scholar] [CrossRef]
- Nandi, K.K.; Izmailov, R.N.; Yanbekov, A.A.; Shayakhmetov, A.A. Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole? Phys. Rev. D 2017, 95, 104011. [Google Scholar] [CrossRef] [Green Version]
- Karimov, R.K.; Izmailov, R.N.; Potapov, A.A.; Nandi, K.K. Can accretion properties distinguish between a naked singularity, wormhole and black hole? Eur. Phys. J. C 2020, 80, 1138. [Google Scholar] [CrossRef]
- Yusupova, R.M.; Karimov, R.K.; Izmailov, R.N.; Nandi, K.K. Accretion Flow onto Ellis—Bronnikov Wormhole. Universe 2021, 7, 177. [Google Scholar] [CrossRef]
- Richarte, M.G.; Simeone, C. Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2007, 76, 087502. [Google Scholar] [CrossRef] [Green Version]
- Matulich, J.; Troncoso, R. Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum. JHEP 2011, 2011, 118. [Google Scholar] [CrossRef] [Green Version]
- Richarte, M.G.; Simeone, C. Corrected Article: Wormholes in Einstein-Born-Infeld theory [Phys. Rev. D 80, 104033 (2009)]. Phys. Rev. D 2010, 81, 109903. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Exact solutions of Brans–Dicke wormholes in the presence of matter. Mod. Phys. Lett. A 2011, 40, 3067. [Google Scholar]
- Ovgun, A.; Jusufi, K.; Sakallı, I. Exact traversable wormhole solution in bumblebee gravity. Phys. Rev. D 2019, 99, 024042. [Google Scholar] [CrossRef] [Green Version]
- Chew, X.Y.; Kleihaus, B.; Kunz, J. Geometry of Spinning Ellis Wormholes. Phys. Rev. D 2016, 94, 104031. [Google Scholar] [CrossRef] [Green Version]
- Chew, X.Y.; Kleihaus, B.; Kunz, J. Spinning Wormholes in Scalar-Tensor Theory. Phys. Rev. D 2018, 97, 064026. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Grado-White, B.; Marolf, D. A perturbative perspective on self-supporting wormholes. Class. Quant. Grav. 2019, 36, 045006. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Understanding the Fundamental Constituents of Matter; Zichichi, A., Ed.; Plenum Press: New York, NY, USA, 1978. [Google Scholar]
- Weinberg, S. General Relativity; Hawking, S.W., Isreal, W., Eds.; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Becker, D.; Reuter, M. Asymptotic Safety and black hole thermodynamics. JHEP 2012, 2012, 172. [Google Scholar] [CrossRef] [Green Version]
- Niedermaier, M.; Reuter, M. The Asymptotic Safety Scenario in Quantum Gravity. Liv. Rev. Rel. 2006, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971. [Google Scholar] [CrossRef] [Green Version]
- Lauscher, O.; Reuter, M. Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 2002, 65, 025013. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Fixed Points of Quantum Gravity. Phys. Rev. Lett. 2004, 92, 201301. [Google Scholar] [CrossRef] [Green Version]
- Machado, P.F.; Saueressig, F. Renormalization group flow of f(R) gravity. Phys. Rev. D 2008, 77, 124045. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, D.; Machado, P.F.; Saueressig, F. Asymptotic safety in higer-derivative gravity. Mod. Phys. Lett. A 2009, 24, 2233. [Google Scholar] [CrossRef]
- Manrique, E.; Rechenberger, S.; Saueressig, F. Asymptotically Safe Lorentzian Gravity. Phys. Rev. Lett. 2011, 106, 251302. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, N.; Litim, D.F.; Pawlowski, J.M.; Rodigast, A. Fixed points and infrared completion of quantum gravity. Phys. Lett. B 2014, 728, 114. [Google Scholar] [CrossRef] [Green Version]
- Morris, T.R.; Slade, Z.H. Solutions to the reconstruction problem in asymptotic safety. JHEP 2015, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Demmel, M.; Saueressig, F.; Zanusso, O. A proper fixed functional for four-dimensional Quantum Einstein Gravity. JHEP 2015, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Platania, A.; Saueressig, F. Functional Renormalization Group Flows on Friedman–Lemaître–Robertson–Walker backgrounds. Found. Phys. 2018, 48, 1291. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, N.; Falls, K.; Pawlowski, J.M.; Reichert, M. Curvature dependence of quantum gravity. Phys. Rev. D 2018, 97, 046007. [Google Scholar] [CrossRef] [Green Version]
- Falls, K.G.; Litim, D.F.; Schröder, J. Aspects of asymptotic safety for quantum gravity. Phys. Rev. D 2019, 99, 126015. [Google Scholar] [CrossRef] [Green Version]
- Narain, G.; Percacci, R. Renormalization group flow in scalar-tensor theories: I. Class. Quant. Grav. 2010, 27, 075001. [Google Scholar] [CrossRef] [Green Version]
- Oda, K.Y.; Yamada, M. Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity. Class. Quant. Grav. 2016, 33, 125011. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, A.; Held, A. Top mass from asymptotic safety. Phys. Lett. B 2018, 777, 217. [Google Scholar] [CrossRef]
- Eichhorn, A.; Schiffer, M. d = 4 as the critical dimensionality of asymptotically safe interactions. Phys. Lett. B 2019, 793, 383. [Google Scholar] [CrossRef]
- Reichert, M.; Smirnov, J. Dark matter meets quantum gravity. Phys. Rev. D 2020, 101, 063015. [Google Scholar] [CrossRef] [Green Version]
- Daas, J.; Oosters, W.; Saueressig, F.; Wang, J. Asymptotically safe gravity with fermions. Phys. Lett. B 2020, 809, 135775. [Google Scholar] [CrossRef]
- Bonanno, A.; Platania, A. Asymptotically safe inflation from quadratic gravity. Phys. Lett. B 2015, 750, 638. [Google Scholar] [CrossRef]
- Bonanno, A.; Koch, B.; Platania, A. Cosmic censorship in quantum Einstein gravity. Class. Quant. Grav. 2017, 34, 095012. [Google Scholar] [CrossRef]
- Bonanno, A.; Gionti, S.J.; Platania, A. Bouncing and emergent cosmologies from Arnowitt–Deser–Misner RG flows. Class. Quant. Grav. 2018, 35, 065004. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Platania, A.; Saueressig, F. Cosmological bounds on the field content of asymptotically safe gravity–matter models. Phys. Lett. B 2018, 784, 229. [Google Scholar] [CrossRef]
- Platania, A. The Inflationary Mechanism in Asymptotically Safe Gravity. Universe 2019, 5, 189. [Google Scholar] [CrossRef] [Green Version]
- Platania, A. From Renormalization Group Flows to Cosmology. Front. Phys. 2020, 8, 188. [Google Scholar] [CrossRef]
- Bonanno, A.; Koch, B.; Platania, A. Gravitational Collapse in Quantum Einstein Gravity. Found. Phys. 2018, 48, 1393. [Google Scholar] [CrossRef] [Green Version]
- Adeifeoba, A.; Eichhorn, A.; Platania, A. Towards conditions for black-hole singularity-resolution in asymptotically safe quantum gravity. Class. Quant. Grav. 2018, 35, 225007. [Google Scholar] [CrossRef] [Green Version]
- Platania, A. Dynamical renormalization of black-hole spacetimes. Eur. Phys. J. C 2019, 79, 470. [Google Scholar] [CrossRef]
- Reuter, M.; Weyer, H. Renormalization group improved gravitational actions: A Brans-Dicke approach. Phys. Rev. D 2004, 69, 104022. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Weyer, H. Quantum gravity at astrophysical distances? JCAP 2004, 12, 001. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Weyer, H. Running Newton constant, improved gravitational actions, and galaxy rotation curves. Phys. Rev. D 2004, 70, 124028. [Google Scholar] [CrossRef] [Green Version]
- Moti, R.; Shojai, A. On the cutoff identification and the quantum improvement in asymptotically safe gravity. Phys. Lett. B 2019, 793, 313. [Google Scholar] [CrossRef]
- Moti, R.; Shojai, A. Geodesic congruence in quantum improved spacetimes. Phys. Rev. D 2020, 101, 064013. [Google Scholar] [CrossRef] [Green Version]
- Souma, W. Non-Trivial Ultraviolet Fixed Point in Quantum Gravity. Prog. Theor. Phys. 1999, 102, 181. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Reuter, M. Renormalization group improved black hole spacetimes. Phys. Rev. D 2000, 62, 043008. [Google Scholar] [CrossRef] [Green Version]
- Babic, A.; Guberina, B.; Horvat, R.; Stefancic, H. Renormalization-group running cosmologies: A scale-setting procedure. Phys. Rev. D 2005, 71, 124041. [Google Scholar] [CrossRef] [Green Version]
- Domazet, S.; Stefancic, H. Renormalization group scale-setting in astrophysical systems. Phys. Lett. B 2011, 703, 1. [Google Scholar] [CrossRef] [Green Version]
- Domazet, S.; Stefancic, H. Renormalization group scale-setting from the action—A road to modified gravity theories. Class. Quantum Grav. 2012, 29, 235005. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, J.M.; Stock, D. Quantum-improved Schwarzschild-(A)dS and Kerr-(A)dS spacetimes. Phys. Rev. D 2018, 98, 106008. [Google Scholar] [CrossRef] [Green Version]
- Moti, R.; Shojai, A. Traversability of quantum improved wormhole solution. Phys. Rev. 2020, D101, 124042. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Eksp, Z. Equation of state at a superhigh density and relativistic restrictions. Teor. Fiz. 1961, 41, 1609. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alencar, G.; Bezerra, V.B.; Muniz, C.R.; Vieira, H.S. Ellis–Bronnikov Wormholes in Asymptotically Safe Gravity. Universe 2021, 7, 238. https://doi.org/10.3390/universe7070238
Alencar G, Bezerra VB, Muniz CR, Vieira HS. Ellis–Bronnikov Wormholes in Asymptotically Safe Gravity. Universe. 2021; 7(7):238. https://doi.org/10.3390/universe7070238
Chicago/Turabian StyleAlencar, G., V. B. Bezerra, C. R. Muniz, and H. S. Vieira. 2021. "Ellis–Bronnikov Wormholes in Asymptotically Safe Gravity" Universe 7, no. 7: 238. https://doi.org/10.3390/universe7070238
APA StyleAlencar, G., Bezerra, V. B., Muniz, C. R., & Vieira, H. S. (2021). Ellis–Bronnikov Wormholes in Asymptotically Safe Gravity. Universe, 7(7), 238. https://doi.org/10.3390/universe7070238