Testing Gravitational Theories in the Field of the Earth with the SaToR-G Experiment
Abstract
:1. Introduction
2. The Goals of SaToR-G
3. The Theoretical and Experimental Framework of SaToR-G
4. The Dicke Framework
- Spacetime is a 4-dimensional differentiable manifold, with each point in the manifold corresponding to a physical event. The manifold need not a priori have either a metric or an affine connection;
- The theory of gravity will be expressed in a form that is independent of the particular coordinates used; that is, the equations of gravity and the mathematical entities in them will be put into covariant form.
- Gravity must be associated with one or more fields of tensorial character, that is, scalars, vectors, and tensors of various ranks;
- The dynamical equations which govern gravity must be derivable from an invariant action principle.
Discussion
5. The Legacy from LARASE
6. Perspectives for SaToR-G
6.1. The Precession of the Orbit Argument of Pericenter
6.2. The Precession of the Orbit Ascending Node
6.3. The Role of the Orbit Residuals
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | A class of theories where the the Ricci scalar is replaced, in the action I, by a function . |
2 | |
3 | Hereinafter we are following Dicke’s framework formulation in the words of Thorne and Will [38]. |
4 | Since the bulk of the overall GR precession is the one due to Schwarzschild precession, in the frame of the PPN formalism the parameter can be approximated by a combination of the PPN parameter (which describes the nonlinearity of the mass contribution to the metric) and (which describes space curvature per unit of mass): . |
5 | This non-metric theory provides a spherically symmetric static solution that excludes the occurrence of spacetime singularities at in the metric. |
6 | |
7 | The Lunar Laser Ranging (LLR) and Radar Ranging techniques. In the case of LLR, though the technology of laser tracking is similar to SLR, the orbit and physical model are very different. See for instance [62] for a brief discussion. |
8 | The complete expression of in this approximation includes an additional contribution equal to , where is a PPN parameter that describes preferred-frame effects and in GR. |
9 | We have assumed . |
10 | The torsional theories are characterized, like Moffat’s theory, by non-symmetric affine connections. |
11 | This result was based on a previous measurement of the Lense-Thirring effect, see [75], where the error budget of the measurement was estimated to be about 10% of the relativistic precession. |
12 | The first case occurs when it is possible to apply the Lagrange equations at the perturbative level, that is when the perturbation corresponds, in the Newtonian sense, to a conservative force. The second case is more general and contemplates the use of Gauss’ perturbative equations. |
References
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N.; et al. Tests of General Relativity from Timing the Double Pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Araya, M.C.; Barayoga, J.C.; Barish, B.C.; Cerretani, G.; et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 2016, 116, 241102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Phys. Rev. Lett. 2016, 116, 131102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. ApJL 2017, 848, L12. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJL 2019, 875, L1. [Google Scholar] [CrossRef]
- Poisson, E.; Will, C.M. Gravity: Newtonian, Post-Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Crosta, M.; Giammaria, M.; Lattanzi, M.G.; Poggio, E. On testing CDM and geometry-driven Milky Way rotation curve models with Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 496, 2107–2122. [Google Scholar] [CrossRef]
- Klauder, J.R. On the meaning of a non-renormalizable theory of gravitation. Gen. Relativ. Gravit. 1975, 6, 13–19. [Google Scholar] [CrossRef]
- Goroff, M.H.; Sagnotti, A. The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 1986, 266, 709–736. [Google Scholar] [CrossRef]
- Doboszewski, J.; Linnemann, N. How Not to Establish the Non-renormalizability of Gravity. Found. Phys. 2018, 48, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Nordtvedt, K. Equivalence Principle for Massive Bodies. II. Theory. Phys. Rev. 1968, 169, 1017–1025. [Google Scholar] [CrossRef]
- Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611–628. [Google Scholar] [CrossRef]
- Will, C.M.; Nordtvedt, J.K. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 177, 757–774. [Google Scholar] [CrossRef]
- Dicke, R.H. The Theoretical Significance of Experimental Relativity; Blackie and Son Ltd.: London/Glasgow, UK, 1964. [Google Scholar]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Johnson, C.W.; Lundquist, C.A.; Zurasky, J.L. (Eds.) The Lageos Satellite. In Proceedings of the Anaheim International Astronautical Federation Congress, Anaheim, CA, USA, 10–16 October 1976. [Google Scholar]
- NASA. LAGEOS Phase B Technical Report, NASA Technical Memorandum X-64915; Technical Report TMX-64915; Marshall Space Flight Center, Marshall Space Flight Center: Huntsville, AL, USA, February 1975.
- Fontana, F. Physical Properties of LAGEOS II Satellite; Technical Report LG-TN-AI-037; Aeritalia: Torino, Itay, 1989. [Google Scholar]
- Paolozzi, A.; Ciufolini, I. LARES successfully launched in orbit: Satellite and mission description. Acta Astronaut. 2013, 91, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Degnan, J.J. Satellite laser ranging: Current status and future prospects. IEEE Trans. Geosci. Remote Sens. 1985, 23, 398–413. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, Y. Dilaton and Possible Non-Newtonian Gravity. Nat. Phys. Sci. 1971, 234, 5–7. [Google Scholar] [CrossRef]
- Damour, T.; Piazza, F.; Veneziano, G. Runaway Dilaton and Equivalence Principle Violations. Phys. Rev. Lett. 2002, 89, 081601. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, S.H. Reanalysis of the Eotvos experiment. Phys. Rev. Lett. 1986, 56, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, D.M. The LAGEOS satellites orbit and Yukawa-like interactions. Adv. Space Res. 2011, 47, 1232–1237. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Peron, R. Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity. Phys. Rev. Lett. 2010, 105, 231103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchesi, D.M.; Peron, R. LAGEOS II pericenter general relativistic precession (1993–2005): Error budget and constraints in gravitational physics. Phys. Rev. D 2014, 89, 082002. [Google Scholar] [CrossRef]
- Schwartz, H.M. Einstein’s comprehensive 1907 essay on relativity, part III. Am. J. Phys. 1977, 45, 899–902. [Google Scholar] [CrossRef]
- Bertotti, B.; Brill, D.; Krotkov, R. Experiments on Gravitation. In Gravitation: An Introduction to Current Research; Wiley & Sons: New York, NY, USA, 1962. [Google Scholar]
- Whitrow, G.J.; Morduch, G.E. Relativistic theories of gravitation: A comparative analysis with particular reference to astronomical tests. Vistas Astron. 1965, 6, 1–67. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Thorne, K.S.; Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. I. Foundations. Astrophys. J. 1971, 163, 595. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Will, C.M. Inaugural Article: On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics. Proc. Natl. Acad. Sci. USA 2011, 108, 5938–5945. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L. Absolute change in general relativity. In Recent Developments in General Relativity; Pergamon Press: Oxford, UK, 1962; p. 121. [Google Scholar]
- Anderson, J.L. Relativity principles and the role of coordinates in physics. In Gravitation and Relativity; Chiu, H.Y., Hoffmann, W.F., Eds.; Benjamin, Inc.: New York, NY, USA, 1964; Chapter 9. [Google Scholar]
- Lucchesi, D.; Anselmo, L.; Bassan, M.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE). Class. Quantum Grav. 2015, 32, 155012. [Google Scholar] [CrossRef]
- Visco, M.; Lucchesi, D.M. Review and critical analysis of mass and moments of inertia of the LAGEOS and LAGEOS II satellites for the LARASE program. Adv. Space Res. 2016, 57, 1928–1938. [Google Scholar] [CrossRef]
- Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Peron, R. On the secular decay of the LARES semi-major axis. Acta Astronaut. 2017, 140, 469–477. [Google Scholar] [CrossRef]
- Visco, M.; Lucchesi, D.M. Comprehensive model for the spin evolution of the LAGEOS and LARES satellites. Phys. Rev. D 2018, 98, 044034. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives. Universe 2019, 5, 141. [Google Scholar] [CrossRef] [Green Version]
- Pucacco, G.; Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Stanga, R.; Visco, M. Earth gravity field modeling and relativistic measurements with laser-ranged satellites and the LARASE research program. In Proceedings of the EGU Conference, Geophysical Research Abstracts, Vienna, Austria, 23–28 April 2017; Volume 19. EGU2017-13554. [Google Scholar]
- Pucacco, G.; Lucchesi, D.M. Tidal effects on the LAGEOS-LARES satellites and the LARASE program. Celest. Mech. Dyn. Astron. 2018, 130, 66. [Google Scholar] [CrossRef]
- Tapley, B.D.; Flechtner, F.; Bettadpur, S.V.; Watkins, M.M. The status and future prospect for GRACE after the first decade. In Proceedings of the Eos Transactions Fall Meeting Supplement Abstract G32A-01, San Francisco, CA, USA, 9–13 December 2013. [Google Scholar]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Cheng, M.; Ries, J.C. Decadal variation in Earth’s oblateness (J2) from satellite laser ranging data. Geophys. J. Int. 2018, 212, 1218–1224. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Visco, M.; Peron, R.; Bassan, M.; Pucacco, G.; Pardini, C.; Anselmo, L.; Magnafico, C. An improved measurement of the Lense-Thirring precession on the orbits of laser-ranged satellites with an accuracy approaching the 1% level. arXiv 2019, arXiv:1910.01941. [Google Scholar]
- Lucchesi, D.; Visco, M.; Peron, R.; Bassan, M.; Pucacco, G.; Pardini, C.; Anselmo, L.; Magnafico, C. A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites. Universe 2020, 6, 139. [Google Scholar] [CrossRef]
- Moffat, J.W. New theory of gravitation. Phys. Rev. D 1979, 19, 3554–3558. [Google Scholar] [CrossRef]
- Moffat, J.W.; Woolgar, E. Motion of massive bodies: Testing the nonsymmetric gravitation theory. Phys. Rev. D 1988, 37, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Hammond, R.T. Torsion gravity. Rep. Prog. Phys. 2002, 65, 599–649. [Google Scholar] [CrossRef]
- Ciufolini, I.; Matzner, R. Non-Riemannian Theories of Gravity and Lunar and Satellite Laser Ranging. Int. J. Mod. Phys. A 1992, 7, 843–852. [Google Scholar] [CrossRef]
- Fujii, Y. Scale invariance and gravity of hadrons. Ann. Phys. 1972, 69, 494–521. [Google Scholar] [CrossRef]
- Fujii, Y. Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance. Phys. Rev. D 1974, 9, 874–876. [Google Scholar] [CrossRef]
- Nobili, A.M.; Comandi, G.L.; Bramanti, D.; Doravari, S.; Lucchesi, D.M.; Maccarrone, F. Limitations to testing the equivalence principle with satellite laser ranging. Gen. Relativ. Gravit. 2008, 40, 1533–1554. [Google Scholar] [CrossRef]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar laser ranging tests of the equivalence principle. Class. Quantum Grav. 2012, 29, 184004. [Google Scholar] [CrossRef] [Green Version]
- Standish, E.M.; Newhall, X.X.; Williams, J.G.; Folkner, W.M. JPL Planetary and Lunar Ephemerides, DE403/LE403; Technical Report JPL IOM 314.10-127; Jet Propulsion Laboratory: Pasadena, CA, USA, 1995. [Google Scholar]
- Jurgens, R.F.; Rojas, F.; Slade, M.A.; Standish, E.M.; Chandler, J.F. Mercury Radar Ranging Data from 1987 to 1997. Astron. J. 1998, 116, 486–488. [Google Scholar] [CrossRef] [Green Version]
- Thirring, H. Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 33–39. [Google Scholar]
- Lense, J.; Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 156–163. [Google Scholar]
- Ciufolini, I.; Wheeler, J.A. Gravitation and Inertia; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Nordtvedt, K. Existence of the Gravitomagnetic Interaction. Int. J. Theor. Phys. 1988, 27, 1395–1404. [Google Scholar] [CrossRef]
- Nordtvedt, K. The Gravitomagnetic Interaction and Its Relationship to Other Relativistic Gravitational Effects. NASA-CR-187736, Final Report; 1991. Available online: https://ntrs.nasa.gov/api/citations/19910012336/downloads/19910012336.pdf (accessed on 30 April 2021).
- Ashby, N.; Shahid-Saless, B. Geodetic precession or dragging of inertial frames? Phys. Rev. D 1990, 42, 1118–1122. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Tegmark, M.; Guth, A.H.; Cabi, S. Constraining torsion with Gravity Probe B. Phys. Rev. D 2007, 76, 104029. [Google Scholar] [CrossRef] [Green Version]
- March, R.; Bellettini, G.; Tauraso, R.; Dell’Agnello, S. Constraining spacetime torsion with LAGEOS. Gen. Relativ. Gravit. 2011, 43, 3099–3126. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lambiase, G.; Sakellariadou, M.; Stabile, A.; Stabile, A. Constraining models of extended gravity using Gravity Probe B and LARES experiments. Phys. Rev. D 2015, 91, 044012. [Google Scholar] [CrossRef] [Green Version]
- Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 2004, 431, 958–960. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Balmino, G. The LAGEOS satellites orbital residuals determination and the Lense Thirring effect measurement. Plan. Space Sci. 2006, 54, 581–593. [Google Scholar] [CrossRef]
Element | Unit | Symbol | LAGEOS | LAGEOS II | LARES |
---|---|---|---|---|---|
semi-major axis | [km] | a | 12,270.00 | 12,162.07 | 7820.31 |
eccentricity | e | 0.0044 | 0.0138 | 0.0012 | |
inclination | [deg] | i | 109.84 | 52.66 | 69.49 |
Rate in the Element | LAGEOS | LAGEOS II | LARES |
---|---|---|---|
+30.67 | +31.50 | +118.48 | |
+17.64 | +17.64 | +17.64 | |
+31.23 | |||
+3278.77 | +3352.58 | +10,110.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesi, D.; Anselmo, L.; Bassan, M.; Lucente, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Testing Gravitational Theories in the Field of the Earth with the SaToR-G Experiment. Universe 2021, 7, 192. https://doi.org/10.3390/universe7060192
Lucchesi D, Anselmo L, Bassan M, Lucente M, Magnafico C, Pardini C, Peron R, Pucacco G, Visco M. Testing Gravitational Theories in the Field of the Earth with the SaToR-G Experiment. Universe. 2021; 7(6):192. https://doi.org/10.3390/universe7060192
Chicago/Turabian StyleLucchesi, David, Luciano Anselmo, Massimo Bassan, Marco Lucente, Carmelo Magnafico, Carmen Pardini, Roberto Peron, Giuseppe Pucacco, and Massimo Visco. 2021. "Testing Gravitational Theories in the Field of the Earth with the SaToR-G Experiment" Universe 7, no. 6: 192. https://doi.org/10.3390/universe7060192
APA StyleLucchesi, D., Anselmo, L., Bassan, M., Lucente, M., Magnafico, C., Pardini, C., Peron, R., Pucacco, G., & Visco, M. (2021). Testing Gravitational Theories in the Field of the Earth with the SaToR-G Experiment. Universe, 7(6), 192. https://doi.org/10.3390/universe7060192