Axion-like Particle Searches with IACTs
Abstract
:1. Axion and Axion-Like-Particles
Experimental Searches for ALPs
2. Phenomenology of the Mixing between Gamma-Rays and ALP and Propagation in the Astrophysical Environment
2.1. ALP Propagation
2.2. Probability of ALP-Gamma Conversion
2.3. Gamma-Ray Survival Probability
2.4. Astrophysical Magnetic Field and Photon Survival
2.5. A Concrete Example of the Photon Survival Probability
3. A Decade of Results with IACTs
3.1. VHE -ray Detection and Analysis Techniques
3.2. Astrophysical Targets for ALPs Searches with IACTs
3.3. Critical Energy and Parameter Space for -ray Studies
3.4. H.E.S.S. Results with PKS 2155-304
3.5. Studies on Spectral Irregularities of NGC 1275
3.6. Combined Fermi-LAT and H.E.S.S. Observations of PKS 2155-304
3.7. H.E.S.S. Study with Galactic Sources
3.8. Supernova Remnants
3.9. Studies Obtained Comparing Data from Different Blazars
3.10. ALP-Photon Back Conversion in the Galactic Magnetic Field
4. Outlook: The Cherenkov Telescope Array
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADMX | Axion Dark Matter eXperiment |
AGN | Active Galactic Nucleus |
ALPs | Axion-like particles |
ALPS | Any Light Particle Search |
ATNF | The Australia Telescope National Facility |
CAST | The CERN Axion Solar Telescope |
CERN | European Council for Nuclear Research |
CDM | Cold Dark Matter |
CMB | Cosmic Microwave Background |
CP | Charge-Parity |
DAMA | Dark Matter experiment |
DARMA | De Angelis, Roncadelli and Mansutti |
DFSZ | Dine–Fischler–Srednicki–Zhitnitsky |
DM | Dark Matter |
EBL | Extragalactic Background Light |
FSRQ | Flat Spectrum Radio Quasar |
GMF | Galactic Magnetic Field |
HE | high-energy (E > 100 MeV) |
H.E.S.S. | The High-Energy Stereoscopic System |
IACT | Imaging Atmospheric Cherenkov Telescope |
IAXO | The International Axion Observatory |
ICMF | Intracluster Magnetic Field |
IGMF | Intergalactic Magnetic Field |
KSVZ | Kim–Shifman–Vainshtein–Zakharov |
LHAASO | The Large High-Altitude Air Shower Observatory |
LHC | Large Hadron Collider |
LIV | Lorentz Invariance Violation |
MAGIC | Major Atmospheric Gamma-ray Cherenkov |
OSQAR | The Optical Search for QED Vacuum Bifringence |
PQ | Peccei-Quinn |
PVLAS | The Polarization of the Vacuum with Laser |
QCD | Quantum Chromo-Dynamics |
QUAX | QUest for AXions |
SM | Standard Model |
SWGO | The Southern Wide-field Gamma-ray Observatory |
VERITAS | Very Energetic Radiation Imaging Telescope Array System |
VHE | very-high-energy (E > 100 GeV) |
WISPs | Weakly Interacting Slim Particles |
1 | By external magnetic field, we mean that the field is present outside the photon-ALP system itself and not generated during or by the interaction. |
2 | http://cta.irap.omp.eu/ctools/ (accessed on 3 June 2020). |
3 | https://gammapy.org/ (accessed on 3 June 2020). |
4 | https://github.com/me-manu/gammaALPs (accessed on 3 June 2020). |
References
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Abel, C.; Afach, S.; Ayres, N.J.; Baker, C.A.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Burghoff, M.; Chanel, E.; et al. Measurement of the Permanent Electric Dipole Moment of the Neutron. Phys. Rev. Lett. 2020, 124, 081803. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E. Weak-Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103–107. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Zhitnitsky, A. On Possible Suppression of the Axion Hadron Interactions. Sov. J. Nucl. Phys. 1980, 31, 260. (In Russian) [Google Scholar]
- Anselm, A.; Uraltsev, N. A second massless axion? Phys. Lett. B 1982, 114, 39–41. [Google Scholar] [CrossRef]
- Anselm, A.A. Experimental test for arion ⇆ photon oscillations in a homogeneous constant magnetic field. Phys. Rev. D 1988, 37, 2001–2004. [Google Scholar] [CrossRef]
- Arias, P.; Cadamuro, D.; Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A. WISPy cold dark matter. J. Cosmol. Astropart. Phys. 2012, 2012, 013. [Google Scholar] [CrossRef]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; et al. New CAST limit on the axion-photon interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar]
- Sikivie, P. Experimental Tests of the “Invisible” Axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Vogel, J.K.; Armengaud, E.; Avignone, F.T.; Betz, M.; Brax, P.; Brun, P.; Cantatore, G.; Carmona, J.M.; Carosi, G.P.; Caspers, F.; et al. The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO). Phys. Procedia 2015, 61, 193–200. [Google Scholar] [CrossRef]
- Krčmar, M.; Krečak, Z.; LjubičiĆ, A.; Stipčević, M.; Bradley, D.A. Search for solar axions using 7Li. Phys. Rev. D 2001, 64, 115016. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S.; Alsum, S.; Aquino, C.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; et al. First Searches for Axions and Axionlike Particles with the LUX Experiment. Phys. Rev. Lett. 2017, 118, 261301. [Google Scholar] [CrossRef] [PubMed]
- Ballou, R.; Deferne, G.; Finger, M.; Finger, M.; Flekova, L.; Hosek, J.; Kunc, S.; Macuchova, K.; Meissner, K.A.; Pugnat, P.; et al. New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall. Phys. Rev. D 2015, 92, 092002. [Google Scholar] [CrossRef] [Green Version]
- Ehret, K.; Frede, M.; Ghazaryan, S.; Hildebrandt, M.; Knabbe, E.A.; Kracht, D.; Lindner, A.; List, J.; Meier, T.; Meyer, N.; et al. New ALPS results on hidden-sector lightweights. Phys. Lett. B 2010, 689, 149–155. [Google Scholar] [CrossRef]
- Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L.J.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; et al. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2018, 120, 151301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbieri, R.; Braggio, C.; Carugno, G.; Gallo, C.S.; Lombardi, A.; Ortolan, A.; Pengo, R.; Ruoso, G.; Speake, C.C. Searching for galactic axions through magnetized media: The QUAX proposal. Phys. Dark Universe 2017, 15, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gambardella, U.; Gatti, C.; et al. Search for invisible axion dark matter of mass ma = 43 μeV with the QUAX-aγ experiment. Phys. Rev. D 2021, 103, 102004. [Google Scholar] [CrossRef]
- Crescini, N.; Alesini, D.; Braggio, C.; Carugno, G.; D’Agostino, D.; Di Gioacchino, D.; Falferi, P.; Gambardella, U.; Gatti, C.; Iannone, G.; et al. Axion Search with a Quantum-Limited Ferromagnetic Haloscope. Phys. Rev. Lett. 2020, 124, 171801. [Google Scholar] [CrossRef] [PubMed]
- Dolag, K.; Bykov, A.M.; Diaferio, A. Non-Thermal Processes in Cosmological Simulations. Space Sci. Rev. 2008, 134, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Churazov, E.; Forman, W.; Jones, C.; Böhringer, H. XMM-Newton Observations of the Perseus Cluster. I. The Temperature and Surface Brightness Structure. Astrophys. J. 2003, 590, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.B.; Gugliucci, N.E.; Fabian, A.C.; Sanders, J.S.; Gentile, G.; Allen, S.W. Magnetic fields in the centre of the Perseus cluster. MNRAS 2006, 368, 1500–1506. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; et al. Constraining cosmic rays and magnetic fields in the Perseus galaxy cluster with TeV observations by the MAGIC telescopes. A&A 2012, 541, A99. [Google Scholar]
- Marsh, M.C.D.; Russell, H.R.; Fabian, A.C.; McNamara, B.R.; Nulsen, P.; Reynolds, C.S. A new bound on axion-like particles. J. Cosmol. Astropart. Phys. 2017, 2017, 036. [Google Scholar] [CrossRef] [Green Version]
- Raffelt, G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37, 1237–1249. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Horns, D.; Raue, M. First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations. Phys. Rev. D 2013, 87, 035027. [Google Scholar] [CrossRef] [Green Version]
- Horns, D.; Maccione, L.; Meyer, M.; Mirizzi, A.; Montanino, D.; Roncadelli, M. Hardening of TeV gamma spectrum of active galactic nuclei in galaxy clusters by conversions of photons into axionlike particles. Phys. Rev. D 2012, 86, 075024. [Google Scholar] [CrossRef] [Green Version]
- Mirizzi, A.; Montanino, D. Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields. J. Cosmol. Astropart. Phys. 2009, 2009, 004. [Google Scholar] [CrossRef] [Green Version]
- Long, G.; Chen, S.; Xu, S.; Zhang, H.H. Probing μeV ALPs with future LHAASO observation of AGN γ-ray spectra. arXiv 2021, arXiv:2101.10270. [Google Scholar]
- de Angelis, A.; Roncadelli, M.; Mansutti, O. Evidence for a new light spin-zero boson from cosmological gamma-ray propagation? Phys. Rev. D 2007, 76, 121301. [Google Scholar] [CrossRef] [Green Version]
- Simet, M.; Hooper, D.; Serpico, P.D. Milky Way as a kiloparsec-scale axionscope. Phys. Rev. D 2008, 77, 063001. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Conde, M.A.; Paneque, D.; Bloom, E.; Prada, F.; Domínguez, A. Hints of the existence of axionlike particles from the gamma-ray spectra of cosmological sources. Phys. Rev. D 2009, 79, 123511. [Google Scholar] [CrossRef]
- de Angelis, A.; Galanti, G.; Roncadelli, M. Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev. D 2011, 84, 105030. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.; Serpico, P.D. Detecting Axionlike Particles with Gamma Ray Telescopes. Phys. Rev. Lett. 2007, 99, 231102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Angelis, A.; Mansutti, O.; Persic, M.; Roncadelli, M. Photon propagation and the very high energy γ-ray spectra of blazars: How transparent is the Universe? MNRAS 2009, 394, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Abramowski, A.; Acero, F.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A.G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; et al. Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum. Phys. Rev. D 2013, 88, 102003. [Google Scholar] [CrossRef] [Green Version]
- Jansson, R.; Farrar, G.R. A New Model of the Galactic Magnetic Field. Astrophys. J. 2012, 757, 14. [Google Scholar] [CrossRef]
- Sun, X.H.; Reich, W.; Waelkens, A.; Enßlin, T.A. Radio observational constraints on Galactic 3D-emission models. A&A 2008, 477, 573–592. [Google Scholar]
- Pshirkov, M.S.; Tinyakov, P.G.; Kronberg, P.P.; Newton-McGee, K.J. Deriving the Global Structure of the Galactic Magnetic Field from Faraday Rotation Measures of Extragalactic Sources. Astrophys. J. 2011, 738, 192. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Meyer, M.; Cotter, G. Relevance of Jet Magnetic Field Structure for Blazar ALP Searches. arXiv 2020, arXiv:2011.08123. [Google Scholar]
- Ajello, M.; Albert, A.; Anderson, B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Phys. Rev. Lett. 2016, 116, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.; Abe, H.; Acero, F.; Acharyya, A.; Adam, R.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; et al. Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation. J. Cosmol. Astropart. Phys. 2021, 2021, 48. [Google Scholar] [CrossRef]
- Hillas, A. Evolution of ground-based gamma-ray astronomy from the early days to the Cherenkov Telescope Arrays. Seeing the High-Energy Universe with the Cherenkov Telescope Array—The Science Explored with the CTA. Astropart. Phys. 2013, 43, 19–43. [Google Scholar] [CrossRef]
- Weekes, T.C.; Cawley, M.F.; Fegan, D.J.; Gibbs, K.G.; Hillas, A.M.; Kowk, P.W.; Lamb, R.C.; Lewis, D.A.; Macomb, D.; Porter, N.A.; et al. Observation of TeV Gamma Rays from the Crab Nebula Using the Atmospheric Cerenkov Imaging Technique. Astrophys. J. 1989, 342, 379. [Google Scholar] [CrossRef]
- Hinton, J.A.; HESS Collaboration. The status of the HESS project. New Astron. Rev. 2004, 48, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.; MAGIC Collaboration. Status of the 17 m diameter Magic telescope. In Proceedings of the International Cosmic Ray Conference, Hamburg, Germany, 8–15 August 2001; Volume 7, p. 2789. [Google Scholar]
- Weekes, T.C.; Badran, H.; Biller, S.D.; Bond, I.; Bradbury, S.; Buckley, J.; Carter-Lewis, D.; Catanese, M.; Criswell, S.; Cui, W.; et al. VERITAS: The Very Energetic Radiation Imaging Telescope Array System. Astropart. Phys. 2002, 17, 221–243. [Google Scholar] [CrossRef]
- Hillas, A.M. Cerenkov Light Images of EAS Produced by Primary Gamma Rays and by Nuclei. In Proceedings of the 19th International Cosmic Ray Conference (ICRC19), San Diego, CA, USA, 11–23 August 1985; Volume 3, p. 445. [Google Scholar]
- Fomin, V.P.; Stepanian, A.A.; Lamb, R.C.; Lewis, D.A.; Punch, M.; Weekes, T.C. New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. I. The false source method. Astropart. Phys. 1994, 2, 137–150. [Google Scholar] [CrossRef]
- Aharonian, F.; Buckley, J.; Kifune, T.; Sinnis, G. High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 2008, 71, 096901. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; et al. Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes. J. High Energy Astrophys. 2015, 5, 30–38. [Google Scholar] [CrossRef]
- Mirizzi, A.; Raffelt, G.G.; Serpico, P.D. Signatures of axionlike particles in the spectra of TeV gamma-ray sources. Phys. Rev. D 2007, 76, 023001. [Google Scholar] [CrossRef] [Green Version]
- Hochmuth, K.A.; Sigl, G. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources. Phys. Rev. D 2007, 76, 123011. [Google Scholar] [CrossRef] [Green Version]
- Brockway, J.W.; Carlson, E.D.; Raffelt, G.G. SN 1987A gamma-ray limits on the conversion of pseudoscalars. Phys. Lett. B 1996, 383, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Grifols, J.A.; Massó, E.; Toldrà, R. Gamma Rays from SN 1987A due to Pseudoscalar Conversion. Phys. Rev. Lett. 1996, 77, 2372–2375. [Google Scholar] [CrossRef] [Green Version]
- Payez, A.; Evoli, C.; Fischer, T.; Giannotti, M.; Mirizzi, A.; Ringwald, A. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles. J. Cosmol. Astropart. Phys. 2015, 2015, 006. [Google Scholar] [CrossRef] [Green Version]
- Raffelt, G.G. Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles; University of Chicago Press: Chicago, IL, USA, 1996. [Google Scholar]
- Raffelt, G.G. Astrophysical Axion Bounds. In Axions; Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 741, p. 51. [Google Scholar]
- Berenji, B.; Gaskins, J.; Meyer, M. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars. Phys. Rev. D 2016, 93, 045019. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.E. Axion mass limits may be improved by pulsar x-ray measurements. Phys. Rev. D 1986, 34, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Giannotti, M.; Duffy, L.D.; Nita, R. New constraints for heavy axion-like particles from supernovae. J. Cosmol. Astropart. Phys. 2011, 2011, 015. [Google Scholar] [CrossRef] [Green Version]
- Zavattini, E.; Zavattini, G.; Ruoso, G.; Polacco, E.; Milotti, E.; Karuza, M.; Gastaldi, U.; di Domenico, G.; Della Valle, F.; Cimino, R.; et al. Experimental Observation of Optical Rotation Generated in Vacuum by a Magnetic Field. Phys. Rev. Lett. 2006, 96, 110406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Angelis, A.; Mansutti, O.; Roncadelli, M. Axion-like particles, cosmic magnetic fields and gamma-ray astrophysics. Phys. Lett. B 2008, 659, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 1984, 22, 425–444. [Google Scholar] [CrossRef]
- Protheroe, R.J.; Meyer, H. An infrared background-TeV gamma-ray crisis? Phys. Lett. B 2000, 493, 1–6. [Google Scholar] [CrossRef] [Green Version]
- MAGIC Collaboration; Albert, J.; Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bartko, H.; et al. Very-High-Energy gamma rays from a Distant Quasar: How Transparent Is the Universe? Science 2008, 320, 1752. [Google Scholar]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; et al. MAGIC Discovery of Very High Energy Emission from the FSRQ PKS 1222+21. Astrophys. J. Lett. 2011, 730, L8. [Google Scholar] [CrossRef]
- Tavecchio, F.; Roncadelli, M.; Galanti, G.; Bonnoli, G. Evidence for an axion-like particle from PKS 1222+216? Phys. Rev. D 2012, 86, 085036. [Google Scholar] [CrossRef] [Green Version]
- Katarzyński, K.; Sol, H.; Kus, A. The multifrequency emission of Mrk 501. From radio to TeV gamma-rays. Astron. Astrophys. 2001, 367, 809–825. [Google Scholar] [CrossRef]
- Wouters, D.; Brun, P. Irregularity in gamma ray source spectra as a signature of axionlike particles. Phys. Rev. D 2012, 86, 043005. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.G.; He, Y.J.; Liang, Y.F.; Lu, R.J.; Liang, E.W. Revisiting the analysis of axion-like particles with the Fermi-LAT gamma-ray observation of NGC1275. arXiv 2020, arXiv:2010.12396. [Google Scholar]
- Della Valle, F.; Ejlli, A.; Gastaldi, U.; Messineo, G.; Milotti, E.; Pengo, R.; Ruoso, G.; Zavattini, G. The PVLAS experiment: Measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity. Eur. Phys. J. C 2016, 76, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liang, Y.F.; Li, S.; Liao, N.H.; Feng, L.; Yuan, Q.; Fan, Y.Z.; Ren, Z.Z. New bounds on axionlike particles from the Fermi Large Area Telescope observation of PKS 2155-304. Phys. Rev. D 2018, 97, 063009. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.F.; Zhang, C.; Xia, Z.Q.; Feng, L.; Yuan, Q.; Fan, Y.Z. Constraints on axion-like particle properties with TeV gamma-ray observations of Galactic sources. J. Cosmol. Astropart. Phys. 2019, 2019, 042. [Google Scholar] [CrossRef]
- Malyshev, D.; Neronov, A.; Semikoz, D.; Santangelo, A.; Jochum, J. Improved limit on axion-like particles from gamma-ray data on Perseus cluster. arXiv 2018, arXiv:1805.04388. [Google Scholar]
- Guo, J.; Li, H.J.; Bi, X.J.; Lin, S.J.; Yin, P.F. The implications of the axion like particle from the Fermi-LAT and H.E.S.S. observations of PG 1553+113 and PKS 2155-304. arXiv 2020, arXiv:2002.07571. [Google Scholar]
- Sanchez, D.A.; Fegan, S.; Giebels, B. Evidence for a cosmological effect in γ-ray spectra of BL Lacertae. A&A 2013, 554, A75. [Google Scholar]
- Mena, O.; Razzaque, S. fparticle mixing in the GeV gamma-ray blazar data? J. Cosmol. Astropart. Phys. 2013, 2013, 023. [Google Scholar] [CrossRef] [Green Version]
- Galanti, G.; Tavecchio, F.; Roncadelli, M.; Evoli, C. Blazar VHE spectral alterations induced by photon-ALP oscillations. MNRAS 2019, 487, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.Q.; Zhang, C.; Liang, Y.F.; Feng, L.; Yuan, Q.; Fan, Y.Z.; Wu, J. Searching for spectral oscillations due to photon-axionlike particle conversion using the Fermi-LAT observations of bright supernova remnants. Phys. Rev. D 2018, 97, 063003. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.Q.; Liang, Y.F.; Feng, L.; Yuan, Q.; Fan, Y.Z.; Wu, J. Searching for the possible signal of the photon-axionlike particle oscillation in the combined GeV and TeV spectra of supernova remnants. Phys. Rev. D 2019, 100, 123004. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Montanino, D.; Conrad, J. On detecting oscillations of gamma rays into axion-like particles in turbulent and coherent magnetic fields. J. Cosmol. Astropart. Phys. 2014, 2014, 003. [Google Scholar] [CrossRef] [Green Version]
- Galanti, G.; Roncadelli, M.; De Angelis, A.; Bignami, G.F. Hint at an axion-like particle from the redshift dependence of blazar spectra. Mon. Not. R. Astron. Soc. 2020, 493, 1553–1564. [Google Scholar] [CrossRef]
- Bai, X.; Bi, B.Y.; Bi, X.J.; Cao, Z.; Chen, S.Z.; Chen, Y.; Chiavassa, A.; Cui, X.H.; Dai, Z.G.; della Volpe, D.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper. arXiv 2019, arXiv:1905.02773. [Google Scholar]
- Barres de Almeida, U.; the SWGO Collaboration. The Southern Wide-Field Gamma-ray Observatory. Astron. Nachrichten 2021, 342, 431–437. [Google Scholar] [CrossRef]
- Spector, A. ALPS II technical overview and status report. arXiv 2016, arXiv:1611.05863. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batković, I.; De Angelis, A.; Doro, M.; Manganaro, M. Axion-like Particle Searches with IACTs. Universe 2021, 7, 185. https://doi.org/10.3390/universe7060185
Batković I, De Angelis A, Doro M, Manganaro M. Axion-like Particle Searches with IACTs. Universe. 2021; 7(6):185. https://doi.org/10.3390/universe7060185
Chicago/Turabian StyleBatković, Ivana, Alessandro De Angelis, Michele Doro, and Marina Manganaro. 2021. "Axion-like Particle Searches with IACTs" Universe 7, no. 6: 185. https://doi.org/10.3390/universe7060185
APA StyleBatković, I., De Angelis, A., Doro, M., & Manganaro, M. (2021). Axion-like Particle Searches with IACTs. Universe, 7(6), 185. https://doi.org/10.3390/universe7060185