Landau Levels in a Gravitational Field: The Schwarzschild Spacetime Case
Abstract
:1. Introduction
2. A Particle inside a Magnetic Field in the Schwarzschild Spacetime
2.1. In Minkowski Spacetime:
2.2. Back to the Schwarzschild Spacetime:
3. Four Methods Leading to Quantization
3.1. Using Perturbation Theory
3.2. Using a Harmonic Oscillator Approximation
3.3. Using the Biconfluent Heun Equation: The Polynomial Approach
3.4. Using the Biconfluent Heun Equation: The Asymptotic Approach
4. Testing Gravity
4.1. With a Yukawa-Like Deviation
4.2. With a Power-Law Deviation
5. The Full Relativistic Regime
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Evaluating Integrals Involving Kummer’s Functions Using Laguerre Polynomials
Appendix A.1. Integrals Needed in “Using Perturbation Theory”
Appendix A.2. Integrals Needed in “With a Yukawa-Like Deviation”
Appendix A.3. Integral Needed in “With a Power-Law Deviation”
Appendix A.4. Integral Needed in “The Full Relativistic Regime”
Appendix A.5. Additional Integrals
References
- Nesvizhevsky, V.V.; Börner, H.G.; Petukhov, A.K.; Abele, H.; Baeßler, S.; Rueß, F.J.; Stöferle, T.; Westphal, A.; Gagarski, A.M.; Petrov, G.A.; et al. Quantum states of neutrons in the Earth’s gravitational field. Nature 2002, 415, 297. [Google Scholar] [CrossRef] [PubMed]
- Nesvizhevsky, V.V.; Börner, H.G.; Gagarski, A.M.; Petoukhov, A.K.; Petrov, G.A.; Abele, H.; Baeßler, S.; Divkovic, G.; Rueß, F.J.; Stöferle, T.; et al. Measurement of quantum states of neutrons in the Earth’s gravitational field. Phys. Rev. D 2003, 67, 102002. [Google Scholar] [CrossRef] [Green Version]
- Nesvizhevsky, V.V.; Petukhov, A.K.; Börner, H.G.; Baranova, T.A.; Gagarski, A.M.; Petrov, G.A.; Protasov, K.V.; Voronin, A.Y.; Baeßler, S.; Abele, H.; et al. Study of the neutron quantum states in the gravity field. Eur. Phys. J. C 2005, 40, 479. [Google Scholar] [CrossRef]
- Rauch, H.H.; Werner, S.A. Neutron Interferometry, Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglment, 2nd ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Kulin, G.V.; Frank, A.I.; Goryunov, S.V.; Kustov, D.V.; Geltenbort, P.; Jentschel, M.; Strepetov, A.N.; Bushuev, V.A. Spectrometer for new gravitational experiment with UCN. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 792, 38. [Google Scholar] [CrossRef] [Green Version]
- Abele, H. Precision experiments with cold and ultra-cold neutrons. Hyperfine Interact 2016, 237, 155. [Google Scholar] [CrossRef] [Green Version]
- Marletto, C.; Vedral, V. Witnessing the quantumness of a system by observing only its classical features. NPJ Quantum Inf. 2017, 3, 43. [Google Scholar] [CrossRef]
- Marletto, C.; Vedral, V. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity. Phys. Rev. Lett. 2017, 119, 240402. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Mazumdar, A.; Morley, G.W.; Ulbricht, H.; Toroš, M.; Paternostro, A.; Geraci, A.A.; Barker, P.F.; Kim, A.S.; Milburn, G. A Spin Entanglement Witness for Quantum Gravity. Phys. Rev. Lett. 2017, 119, 240401. [Google Scholar] [CrossRef] [Green Version]
- Hammad, F.; Landry, A.; Mathieu, K. Prospects for testing the inverse-square law and gravitomagnetism using quantum interference. Int. J. Mod. Phys. D 2021, 30, 2150004. [Google Scholar] [CrossRef]
- Hammad, F.; Landry, A. A simple superconductor quantum interference device for testing gravity. Mod. Phys. Lett. 2020, 35, 2050171. [Google Scholar] [CrossRef]
- Okawara, H.; Yamada, K.; Asada, H. Possible Daily and Seasonal Variations in Quantum Interference Induced by Chern-Simons Gravity. Phys. Rev. Lett. 2012, 109, 231101. [Google Scholar] [CrossRef] [Green Version]
- Okawara, H.; Yamada, K.; Asada, H. Possible latitude effects of Chern-Simons gravity on quantum interference. Phys. Rev. D 2013, 87, 084038. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, D.; Omoto, N.; Yamada, K.; Asada, H. Possible altitudinal, latitudinal and directional dependence of relativistic Sagnac effect in Chern-Simons modified gravity. Phys. Rev. D 2014, 90, 064036. [Google Scholar] [CrossRef] [Green Version]
- Landry, A.; Paranjape, M.B. Gravitationally induced quantum transitions. Phys. Rev. D 2016, 93, 122006. [Google Scholar] [CrossRef] [Green Version]
- Landry, A.; Paranjape, M.B. Graviton Laser. Int. J. Mod. Phys. D 2016, 25, 1644016. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 2nd ed.; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Edery, A.; Audin, Y. New degeneracies and modification of Landau levels in the presence of a parallel linear electric field. J. Phys. Commun. 2019, 3, 025013. [Google Scholar] [CrossRef]
- Prange, R.E.; Girvin, S.M. (Eds.) The Quantum Hall Effect; Springer: Heidelberg, Germany, 1992. [Google Scholar]
- Janssen, M.; Viehweger, O.; Fastenrath, U.; Hajdu, J. Introduction to the Theory of the Integer Quantum Hall Effect; VCH: Weinheim, Germany, 1994. [Google Scholar]
- Hehl, F.W.; Obukhov, Y.N.; Rosenow, B. Is the Quantum Hall Effect Influenced by the Gravitational Field? Phys. Rev. Lett. 2004, 93, 096804. [Google Scholar] [CrossRef] [Green Version]
- Grosse, H.; Stubbe, J. Splitting of Landau levels in the presence of external potentials. Lett. Math. Phys. 1995, 34, 59. [Google Scholar] [CrossRef]
- Hammad, F.; Landry, A.; Mathieu, K. A fresh look at the influence of gravity on the quantum Hall effect. Eur. Phys. J. Plus 2020, 135, 449. [Google Scholar] [CrossRef]
- Parker, L.E.; Toms, D.J. Quantum Field Theory in Curved Spacetime, Quantized Fields and Gravity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Griffiths, J.B.; Podolský, J. Exact Space-Times in Einstein’s General Relativity; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Ernst, F.J. Black holes in a magnetic universe. J. Math. Phys. 1976, 17, 54. [Google Scholar] [CrossRef]
- Ernst, F.J. Removal of the nodal singularity of the C-metric. J. Math. Phys. 1976, 17, 515. [Google Scholar] [CrossRef]
- Gal’tsov, D.V.; Petukhov, V.I. black hole in an external magnetic field. Sov. Phys. JETP 1978, 47, 419. [Google Scholar]
- Karas, V.; Vokrouhlicky, D. Chaotic motion of test particles in the Ernst space-time. Gen. Relat. Gravit. 1992, 24, 729. [Google Scholar] [CrossRef]
- Bonnor, W.B. Static Magnetic Fields in General Relativity. Proc. Phys. Soc. A 1954, 67, 225. [Google Scholar] [CrossRef]
- Melvin, M.A. Pure magnetic and electric geons. Phys. Lett. 1964, 8, 65. [Google Scholar] [CrossRef]
- Santos, L.C.N.; Barros, C.C., Jr. Dirac equation and the Melvin metric. Eur. Phys. J. C 2016, 76, 560. [Google Scholar] [CrossRef] [Green Version]
- Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1: Equation of State and Structure; Springer: Berlin, Germany, 2007. [Google Scholar]
- Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.; Springer: Berlin, Germany, 1966. [Google Scholar]
- Buchholz, H. The Confluent Hypergeometric Function, with Special Emphasis on Its Applications; Springer: Berlin, Germany, 1969. [Google Scholar]
- Ferrario, L.; de Martino, D.; Gaensicke, B. Magnetic White Dwarfs. Space Sci. Rev. 2015, 191, 111. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, R.N. The Hill determinant: An application to a class of confinement potentials. J. Phys. A Math. Gen. 1983, 16, 209. [Google Scholar] [CrossRef]
- Taut, M. Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem. Phys. Rev. A 1993, 48, 3561. [Google Scholar] [CrossRef]
- Truong, T.T.; Bazzali, D. Exact low-lying states of two interacting equally charged particles in a magnetic field. Phys. Lett. A 2000, 269, 186. [Google Scholar] [CrossRef]
- Karwowski, J.; Cyrnek, L. Harmonium. Ann. Phys. (Leipzig) 2004, 13, 181. [Google Scholar] [CrossRef]
- Karwowski, J. Few-particle systems: Quasi-exactly solvable models. J. Phys. Conf. Ser. 2008, 104, 012033. [Google Scholar] [CrossRef]
- Karwowski, J.; Szewc, K. Separable N-particle Hookean models. J. Phys. Conf. Ser. 2010, 213, 012016. [Google Scholar] [CrossRef]
- Caruso, F.; Martins, J.; Oguri, V. Solving a two-electron quantum dot model in terms of polynomial solutions of a Biconfluent Heun Equation. Ann. Phys. 2014, 347, 130. [Google Scholar] [CrossRef] [Green Version]
- Karwowski, J.; Witek, H.A. Biconfluent Heun equation in quantum chemistry: Harmonium and related systems. Theor. Chem. Acc. 2014, 133, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gharbi, A.; Bouda, A. Energy spectra of Hartmann and ring-shaped oscillator potentials using the quantum Hamilton-Jacobi formalism. Phys. Scr. 2013, 88, 045007. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.-H.; Ma, Z.-Q.; Esposito, G. Exact Solutions of the Schrodinger Equation with Inverse-Power Potential in Two Dimensions. Found. Phys. Lett. 1999, 12, 465. [Google Scholar] [CrossRef]
- Dong, S.-H. Exact Solutions of the Two-Dimensional Schrödinger Equation with Certain Central Potentials. Int. J. Theor. Phys. 2000, 39, 1119. [Google Scholar] [CrossRef]
- Ikhdair, S.; Sever, R. Exact solutions of the radial Schrödinger equation for some physical potentials. Cent. Eur. Phys. J. 2007, 5, 516. [Google Scholar] [CrossRef] [Green Version]
- Aguilera-Navarro, V.C.; Estévez, G.A.; Guardiola, R. Variational and perturbative schemes for a spiked harmonic oscillator. J. Math. Phys. 1990, 31, 99. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.L.; Saad, N.; von Keviczky, A.B. Matrix elements for a generalized spiked harmonic oscillator. J. Math. Phys. 1998, 39, 6345. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.L.; Saad, N. Variational analysis for a generalized spiked harmonic oscillator. J. Phys. A 2000, 33, 569. [Google Scholar] [CrossRef]
- Hall, R.L.; Saad, N. Perturbation expansions for the spiked harmonic oscillator and related series involving the gamma function. J. Phys. A 2000, 33, 5531. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.L.; Saad, N.; von Keviczky, A.B. Generalized spiked harmonic oscillator. J. Phys. A 2001, 34, 1169. [Google Scholar] [CrossRef] [Green Version]
- Saad, N.; Hall, R.L. Integrals containing confluent hypergeometric functions with applications to perturbed singular potentials. J. Phys. A 2003, 36, 7771. [Google Scholar] [CrossRef] [Green Version]
- Schiff, J.I. Quantum Mechanics, 1st ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1949. [Google Scholar]
- Garstang, R.H. Atoms in high magnetic fields (white dwarfs). Rep. Prog. Phys. 1977, 40, 105. [Google Scholar] [CrossRef]
- Ruder, H.; Wunner, G.; Herold, H.; Geyer, F. Atoms in Strong Magnetic Fields: Quantum Mechanical Treatment and Applications in Astrophysics and Quantum Chaos; Springer: Berlin, Germany, 1994. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Solutions of Quartic Equations. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1972. [Google Scholar]
- Arscott, F.M.; Slavyanov, S.Y.; Schmidt, D.; Wolf, G.; Maroni, P.; Duval, A. Heun’s Differential Equation; Ronveaux, A., Ed.; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Hortacsu, M. Heun Functions and Some of Their Applications in Physics. Adv. High Energy Phys. 2018, 2018, 8621573. [Google Scholar] [CrossRef] [Green Version]
- Arriola, E.R.; Zarzo, A.; Dehesa, J.S. Spectral properties of the biconfluent Heun differential equation. J. Comput. Appl. Math. 1991, 37, 161. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.M.; Sesma, J. Global solutions of the biconfluent Heun equation. Numer. Algor. 2016, 71, 797. [Google Scholar] [CrossRef]
- Vieira, H.S.; Bezerra, V.B. Quantum Newtonian cosmology and the biconfluent Heun functions. J. Math. Phys. 2015, 56, 092501. [Google Scholar] [CrossRef] [Green Version]
- Cunha, M.S.; Muniz, C.R.; Christiansen, H.R.; Bezerra, V.B. Relativistic Landau levels in the rotating cosmic string spacetime. Eur. Phys. J. C 2016, 76, 512. [Google Scholar] [CrossRef]
- Temme, N.M. Asymptotic Methods for Integrals; Series in Analysis Volume 6; World Scientific: Hackensack, NJ, USA, 2015. [Google Scholar]
- Abele, H.; Baessler, S.; Westphal, A. Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between 1 micron and 10 microns. Lect. Notes Phys. 2003, 631, 355. [Google Scholar]
- Biedermann, G.W.; Wu, X.; Deslauriers, L.; Roy, S.; Mahadeswaraswamy, C.; Kasevich, M.A. Testing gravity with cold-atom interferometers. Phys. Rev. A 2015, 91, 033629. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, Y.; Itagami, K.; Tani, M.; Kim, G.N.; Komamiya, S. Constraints on New Gravitylike Forces in the Nanometer Range. Phys. Rev. Lett. 2015, 114, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borka, D.; Jovanović, P.; Jovanović, V.B.; Zakharov, A.F. Constraining the range of Yukawa gravity interaction from S2 star orbits. JCAP 2013, 11, 050. [Google Scholar] [CrossRef] [Green Version]
- Adelberger, E.G.; Heckel, B.R.; Nelson, A.E. Tests of the Gravitational Inverse-Square Law. Ann. Rev. Nucl. Part. Sci. 2003, 53, 77. [Google Scholar] [CrossRef] [Green Version]
- Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoedl, S.; Schlamminger, S. Torsion balance experiments: A low-energy frontier of particle physics. Prog. Part. Nucl. Phys. 2009, 62, 102. [Google Scholar] [CrossRef]
- Murata, J.; Tanaka, S. Review of short-range gravity experiments in the LHC era. Class. Quantum Grav. 2015, 32, 033001. [Google Scholar] [CrossRef] [Green Version]
- Koester, D.; Chanmugam, G. Physics of white dwarf stars. Rep. Prog. Phys. 1990, 53, 837. [Google Scholar] [CrossRef]
- Balberg, S.; Shapiro, S.L. The Properties of Matter in White Dwarfs and Neutron Stars. In Handbook of Elastic Properties of Solids, Liquids, and Gases, Four-Volume Set, 1st ed.; Levy, M., Bass, H., Stern, R., Eds.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Suh, I.-S.; Mathews, G.J. Mass-Radius Relation for Magnetic White Dwarfs. APJ 2000, 530, 949. [Google Scholar] [CrossRef] [Green Version]
- Das, U.; Mukhopadhyay, B. Strongly magnetized cold electron degenerate gas: Mass-radius relation of the magnetized white dwarf. Phys. Rev. D 2012, 86, 042001. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.; Prakash, M.; Lattimer, J.M. The Equation of State of Neutron Star Matter in Strong Magnetic Fields. Astrophys. J. 2000, 537, 351. [Google Scholar] [CrossRef] [Green Version]
- Chamel, N.; Stoyanov, Z.K.; Mihailov, L.M.; Mutafchieva, Y.D.; Pavlov, R.L.; Velchev, C.J. Role of Landau quantization on the neutron-drip transition in magnetar crusts. Phys. Rev. C 2015, 91, 065801. [Google Scholar] [CrossRef]
- Chamel, N.; Mutafchieva, Y.D.; Stoyanov, Z.K.; Mihailov, L.M.; Pavlov, R.L. Landau quantization and neutron emissions by nuclei in the crust of a magnetar. J. Phys. Conf. Ser. 2016, 724, 012034. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, D.G.; Kaminker, A.D. Neutron star crusts with magnetic fields. In The Equation of State in Astrophysics; Chabrier, G., Schatzman, E., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 214–238. [Google Scholar]
- Hammad, F.; Landry, A. Landau levels in a gravitational field: The Levi-Civita and Kerr spacetimes case. Eur. Phys. J. Plus 2020, 135, 90. [Google Scholar] [CrossRef]
- Florides, P.S. A new interior Schwarzschild solution. Proc. R. Soc. Lond. A 1974, 337, 529. [Google Scholar]
- Haskell, B.; Sedrakian, A. Superfluidity and Superconductivity in Neutron Stars. In The Physics and Astrophysics of Neutron Stars. Astrophysics and Space Science Library; Rezzolla, L., Pizzochero, P., Jones, D., Rea, N., Vidaña, I., Eds.; Springer: Cham, Switzerland, 2018; Volume 457. [Google Scholar]
- Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxenb, J. Matter-wave interference with particles selected from a molecular library with masses exceeding 10,000 amu. Phys. Chem. Chem. Phys. 2013, 15, 14696. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.; Simon, C.; Penrose, R.; Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 2003, 91, 130401. [Google Scholar] [CrossRef] [Green Version]
- Romero-Isart, O.; Juan, M.L.; Quidant, R.; Cirac, J.I. Toward Quantum Superposition of Living Organisms. New J. Phys. 2010, 12, 033015. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.E.; Regal, C.A.; Papp, S.B.; Wilson, D.J.; Ye, J.; Painter, O.; Kimble, H.J.; Zoller, P. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. USA 2010, 107, 1005. [Google Scholar] [CrossRef] [Green Version]
- Barker, P.F.; Shneider, M.N. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 2010, 81, 023826. [Google Scholar] [CrossRef] [Green Version]
- Romero-Isart, O.; Pflanzer, A.C.; Blaser, F.; Kaltenbaek, R.; Kiesel, N.; Aspelmeyer, M.; Cirac, J.I. Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects. Phys. Rev. Lett. 2011, 107, 020405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gieseler, J.; Deutsch, B.; Quidant, R.; Novotny, L. Sub-kelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. Phys. Rev. Lett. 2012, 109, 103603. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, N.; Blaser, F.; Delić, U.; Grass, D.; Kaltenbaek, R.; Aspelmeyer, M. Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. USA 2013, 110, 14180. [Google Scholar] [CrossRef] [Green Version]
- Asenbaum, P.; Kuhn, S.; Nimmrichter, S.; Sezer, U.; Arndt, M. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 2013, 4, 2743. [Google Scholar] [CrossRef] [Green Version]
- Bateman, J.; Nimmrichter, S.; Hornberger, K.; Ulbricht, H. Near-field interferometry of a free-falling nanoparticle from a point-like source. Nat. Commun. 2014, 5, 4788. [Google Scholar] [CrossRef]
- Millen, J.; Fonseca, P.Z.G.; Mavrogordatos, T.; Monteiro, T.S.; Barker, P.F. Cavity Cooling a Single Charged Levitated Nanosphere. Phys. Rev. Lett. 2015, 114, 123602. [Google Scholar] [CrossRef] [Green Version]
- Pino, H.; Prat-Camps, J.; Sinha, K.; Venkatesh, B.P.; Romero-Isart, O. On-chip quantum interference of a superconducting microsphere. Quantum Sci. Technol. 2018, 3, 25001. [Google Scholar] [CrossRef] [Green Version]
- Poh-aun, L.; Ong, S.-H.; Srivastava, H.M. Some Integrals of the products of Laguerre polynomials. Int. J. Comput. Math. 2000, 78, 303. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Special Functions; Gordon and Breach: New York, NY, USA, 1986; Volume 2. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Function; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landry, A.; Hammad, F. Landau Levels in a Gravitational Field: The Schwarzschild Spacetime Case. Universe 2021, 7, 144. https://doi.org/10.3390/universe7050144
Landry A, Hammad F. Landau Levels in a Gravitational Field: The Schwarzschild Spacetime Case. Universe. 2021; 7(5):144. https://doi.org/10.3390/universe7050144
Chicago/Turabian StyleLandry, Alexandre, and Fayçal Hammad. 2021. "Landau Levels in a Gravitational Field: The Schwarzschild Spacetime Case" Universe 7, no. 5: 144. https://doi.org/10.3390/universe7050144
APA StyleLandry, A., & Hammad, F. (2021). Landau Levels in a Gravitational Field: The Schwarzschild Spacetime Case. Universe, 7(5), 144. https://doi.org/10.3390/universe7050144