# Axion Electrodynamics and the Axionic Casimir Effect

## Abstract

**:**

## 1. Introduction

## 2. Basics of Axion Electrodynamics Dielectric Environment

**D**= ε

**E**,

**B**= μ

**H**. In macroscopic electrodynamics, there are two field tensors, ${F}_{\alpha \beta}$ and ${H}_{\alpha \beta}$, where the latter describes the dielectric response to the fields. We will use the metric convention ${g}_{00}=-1$.

## 3. Axion-Generated Electric Current in a Strong Magnetic Field

## 4. Spatially Varing Axion and Casimir-Like Effect

## 5. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Sikivie, P.; Sullivan, N.; Tanner, D.B. Proposal for Axion Dark Matter Detection Using an Circuit. Phys. Rev. Lett.
**2014**, 112, 131301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lawson, M.; Millar, A.J.; Pancaldi, M.; Vitagliano, E.; Wilczek, F. Tunable axion plasma haloscopes. Phys. Rev. Lett.
**2019**, 123, 141802. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Asztalos, S.J.; Bradley, R.F.; Duffy, L.; Hagmann, C.; Kinion, D.; Moltz, D.M.; Rosenberg, L.J.; Sikivie, P.; Stoeffl, W.; Sullivan, N.S.; et al. Improved rf cavity search for halo axions. Phys. Rev. D
**2004**, 69, 011101. [Google Scholar] [CrossRef] [Green Version] - Sikivie, P. Invisible axion search methods. Rev. Mod. Phys.
**2021**, 93, 15004. [Google Scholar] [CrossRef] - McDonald, J.I.; Ventura, L.B. Optical properties of dynamical axion backgrounds. Phys. Rev. D
**2020**, 101, 123503. [Google Scholar] [CrossRef] - Chaichian, M.; Brevik, I.; Oksanen, M. Can the gamma-ray bursts travelling through the interstellar space be explained without invoking the drastic assumption of Lorentz invariance violation? In Proceedings of the 40th International Conference on High Energy Physics (ICHEP2020), Prague, Czech Republic, 28 July–6 August 2020. [Google Scholar]
- Particle Data Group; Zyla, P.A.; Barnet, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; et al. 2020 Review of particle physics. Prog. Theor. Exp. Phys.
**2020**, 2020, 083C01. [Google Scholar] - Arza, A.; Schwetz, T.; Todarello, E. How to suppress exponential growth—On the parametricresonance of photons in an axion background. arXiv
**2020**, arXiv:2004.01669v2. [Google Scholar] - Carenza, P.; Mirizzi, A.; Sigl, G. Dynamical evolution of axion condensates under stimulated decays into photons. Phys. Rev. D
**2020**, 101, 103016. [Google Scholar] [CrossRef] - Leroy, M.; Chianese, M.; Edwards, T.D.P.; Weniger, C. Radio signal of axion-photon conversion in neutron stars: A ray tracing analysis. Phys. Rev. D
**2020**, 101, 123003. [Google Scholar] [CrossRef] - Brevik, I.; Chaichian, M.; Oksanen, M. Can dispersion of light in interstellar medium cause the delays of gamma-ray bursts without invoking the drastic assumption of Lorentz invariance violation? arXiv
**2020**, arXiv:2101.00954. [Google Scholar] - Qiu, Z.; Cao, G.; Huang, X.G. Electrodynamics of chiral matter. Phys. Rev. D
**2017**, 95, 036002. [Google Scholar] [CrossRef] [Green Version] - Fukushima, K.; Imaki, S.; Qiu, Z. Anomalous Casimir effect in axion electrodynamics. Phys. Rev. D
**2019**, 100, 045013. [Google Scholar] [CrossRef] [Green Version] - Dine, M.; Fischler, W.; Srednicki, M. A Simple Solution to the Strong CP Problem with a Harmless Axion. Phys. Lett. B
**1981**, 104, 199. [Google Scholar] [CrossRef] - Duffy, L.D.; van Bibber, K. Axions as dark matter particles. New J. Phys.
**2009**, 11, 105008. [Google Scholar] [CrossRef] - Harris, P.G.; Baker, C.A.; Green, K.; Iaydjiev, P.; Ivanov, S.; May, D.J.R.; Pendlebury, J.M.; Shiers, D.; Smith, K.F.; van der Grinten, M.; et al. New Experimental Limit on the Electric Dipole Moment of the Neutron. Phys. Rev. Lett.
**1999**, 82, 904. [Google Scholar] [CrossRef] [Green Version] - Graham, P.W.; Rajendran, S. Axion dark matter detection with cold molecules. Phys. Rev. D
**2011**, 84, 055013. [Google Scholar] [CrossRef] [Green Version] - Milton, K.A. The Casimir Effect. Physical Manifestations of the Zero-Point Energy; World Scientific: Singapore, 2001. [Google Scholar]
- Elizalde, E.; Odintsov, S.D.; Romeo, A.; Bytsenko, A.A.; Zerbini, S. Zeta Regularization Techniques with Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Elizalde, E. Ten Physical Applications of Spectral Zeta Functions; Springer Nature: Basingstoke, UK, 1995. [Google Scholar]
- Brevik, I.; Bytsenko, A.A.; Pimentel, B.M. Thermodynamic properties of the relativistic composite string—Expository remarks. In Theoretical Physics 2002, Part 2; Nova Science Publishers: New York, NY, USA, 2003. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Brevik, I.
Axion Electrodynamics and the Axionic Casimir Effect. *Universe* **2021**, *7*, 133.
https://doi.org/10.3390/universe7050133

**AMA Style**

Brevik I.
Axion Electrodynamics and the Axionic Casimir Effect. *Universe*. 2021; 7(5):133.
https://doi.org/10.3390/universe7050133

**Chicago/Turabian Style**

Brevik, Iver.
2021. "Axion Electrodynamics and the Axionic Casimir Effect" *Universe* 7, no. 5: 133.
https://doi.org/10.3390/universe7050133