Probing the Universe with Fast Radio Bursts
Abstract
:1. Introduction
1.1. Dispersion Measure
1.2. Pulse Scattering and Scintillation
1.3. Faraday Rotation
1.4. Motivation and Scope of This Review
2. Probing the Structure of the Universe
2.1. The Missing Baryon Problem
2.2. The Macquart Relation
2.3. Turbulence and Magnetisation in the IGM
- Models exist for the scattering effects of the Milky Way ISM through analysis of pulsars [72,118], and good estimates of the scattering due to this source for a given FRB can be made. FRBs are mostly found at high Galactic latitudes such that scattering effects due to the Milky Way ISM are low [119,120]. However, the Milky Way halo may play a role, and this is now starting to be studied with FRBs. The maximum amount of pulse broadening from the Galactic halo has been estimated as μs at 1 GHz, which is comparable to the scattering expected from the Galactic disk for line-of-sight towards the Galactic anti-center or at higher Galactic latitudes [121]. For FRBs which are detected at low Galactic latitudes such as FRB 121102 and FRB 180916, the reported scattering measurements of 40 μs at 1 GHz and 2.7 μs at 1.7 GHz are consistent with the scattering due to the Milky Way [121,122]. For other bursts, high time resolution analysis has shown that the scattering originates well beyond the Milky Way [6,71,73].
- Intervening galaxies [123] are able to contribute to the scattering, but the probability of impact with a disk is low: Macquart and Koay [124] estimate only a 5% chance that a source at will intersect with the inner regions of galaxies (i.e., within 10 kpc). For most FRBs this is not the primary source of scattering.
- Cosmological hydro-dynamical simulations suggest that the FRB host galaxy (ISM and the circumburst medium) and foreground halos may dominate the scattering [125,126]. The host can cause significant broadening and is sufficient to account for some of the observations [117,127,128]. The host contribution depends on the progenitor location within it, and the host’s inclination on the sky. The studies suggest that the pulse broadening is produced by the highly turbulent and dense medium in the immediate vicinity of the FRB, possibly for FRB progenitor models involving young stellar populations [6,49]. Interestingly FRB 180924, FRB 191001 and FRB 190608 which are localised to the outskirts of their host galaxies show large amounts of scattering in the current sample [14,77]. In case of FRB 190608, the studies indicate that the scattering is likely originating within the host galaxy [129,130]. Measurements of scattering for the UTMOST FRB 170827 is consistent with a two-screen model with one screen in the Milky Way and other in the host galaxy of the burst [71]. Furthermore, repeated bursts from some FRBs can be used to monitor the host-galaxy ISM properties on timescales of years, probing AU-scale density inhomogenities in extragalactic ISM.
2.4. Probing the CGM
2.5. Tomographic Reconstruction of the Cosmic Web
2.6. FRB Host Galaxy Environments
Dispersion Measure Contribution from the Host Galaxy
2.7. Probing the Milky Way ISM and Ionised Halo Using FRBs
3. Constraining Cosmological Parameters Using FRBs
3.1. Dark Energy Equation of State (w) and Baryon Density ()
3.2. Hubble Parameter
4. FRBs as Probes of Reionisation
5. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nuclei |
ASKAP | Australian Square Kilometre Array Pathfinder |
BAO | Baryon Acoustic Oscillations |
BBN | Big Bang Nucleosynthesis |
CCSNe | Core-collapse supernovae |
CDM | Cold dark matter |
CGM | Circumgalactic medium |
CHIME | Canadian Hydrogen Intensity Mapping Experiment |
CMB | Cosmic Microwave background |
CRAFT | Commensal Real-time ASKAP Fast Transients |
DE | Dark Energy |
DM | Dispersion measure |
DSA | Deep Synoptic Array |
EoR | Epoch of reionisation |
EoS | Equation of State |
FRB | Fast radio burst |
GRB | Gamma-Ray Burst |
GW | Gravitational wave |
IGM | Intergalactic medium |
ISM | Interstellar medium |
LGRBs | Long Gamma-Ray bursts |
MCPM | Monte Carlo Physarum Machine |
RFI | Radio Frequency Interference |
RM | Rotation measure |
SGRBs | Short Gamma-Ray bursts |
SKA | Square Kilometre Array |
VLA | Very Large Array |
VLBI | Very-long-baseline interferometry |
WHIM | Warm-Hot Intergalactic Medium |
References
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, D.; Stappers, B.; Bailes, M.; Barsdell, B.; Bates, S.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.J.; Coster, P.; et al. A Population of Fast Radio Bursts at Cosmological Distances. Science 2013, 341, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Keane, E.F.; Barr, E.D.; Jameson, A.; Petroff, E.; Johnston, S.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; et al. The SUrvey for Pulsars and Extragalactic Radio Bursts—II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 2018, 475, 1427–1446. [Google Scholar] [CrossRef] [Green Version]
- Petroff, E.; Barr, E.D.; Jameson, A.; Keane, E.F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; van Straten, W. FRBCAT: The Fast Radio Burst Catalogue. arXiv 2016, arXiv:1601.03547. [Google Scholar] [CrossRef] [Green Version]
- Spitler, L.G.; Cordes, J.M.; Hessels, J.W.T.; Lorimer, D.R.; McLaughlin, M.A.; Chatterjee, S.; Crawford, F.; Deneva, J.S.; Kaspi, V.M.; Wharton, R.S.; et al. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey. Astrophys. J. 2014, 790, 101. [Google Scholar] [CrossRef] [Green Version]
- Masui, K.; Lin, H.H.; Sievers, J.; Anderson, C.J.; Chang, T.C.; Chen, X.; Ganguly, A.; Jarvis, M.; Kuo, C.Y.; Li, Y.C.; et al. Dense magnetized plasma associated with a fast radio burst. Nature 2015, 528, 523–525. [Google Scholar] [CrossRef] [Green Version]
- Parent, E.; Chawla, P.; Kaspi, V.M.; Agazie, G.Y.; Blumer, H.; DeCesar, M.; Fiore, W.; Fonseca, E.; Hessels, J.W.T.; Kaplan, D.L.; et al. First Discovery of a Fast Radio Burst at 350 MHz by the GBNCC Survey. Astrophys. J. 2020, 904, 92. [Google Scholar] [CrossRef]
- Caleb, M.; Flynn, C.; Bailes, M.; Barr, E.D.; Bateman, T.; Bhandari, S.; Campbell-Wilson, D.; Farah, W.; Green, A.J.; Hunstead, R.W.; et al. The first interferometric detections of fast radio bursts. Mon. Not. R. Astron. Soc. 2017, 468, 3746–3756. [Google Scholar] [CrossRef]
- Farah, W.; Flynn, C.; Bailes, M.; Jameson, A.; Bateman, T.; Campbell-Wilson, D.; Day, C.K.; Deller, A.T.; Green, A.J.; Gupta, V.; et al. Five new real-time detections of fast radio bursts with UTMOST. Mon. Not. R. Astron. Soc. 2019, 488, 2989–3002. [Google Scholar] [CrossRef] [Green Version]
- Bannister, K.W.; Shannon, R.M.; Macquart, J.P.; Flynn, C.; Edwards, P.G.; O’Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N.; et al. The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey. Astrophys. J. Lett. 2017, 841, L12. [Google Scholar] [CrossRef]
- Shannon, R.M.; Macquart, J.P.; Bannister, K.W.; Ekers, R.D.; James, C.W.; Oslowski, S.; Qiu, H.; Sammons, M.; Hotan, A.W.; Voronkov, M.A.; et al. The dispersion-brightness relation for fast radio bursts from a wide-field survey. Nature 2018, 562, 386–390. [Google Scholar] [CrossRef]
- Bannister, K.W.; Deller, A.T.; Phillips, C.; Macquart, J.P.; Prochaska, J.X.; Tejos, N.; Ryder, S.D.; Sadler, E.M.; Shannon, R.M.; Simha, S.; et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 2019, 365, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Macquart, J.P.; Prochaska, J.X.; McQuinn, M.; Bannister, K.W.; Bhandari, S.; Day, C.K.; Deller, A.T.; Ekers, R.D.; James, C.W.; Marnoch, L.; et al. A census of baryons in the universe from localized fast radio bursts. Nature 2020, 581, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Bannister, K.W.; Lenc, E.; Cho, H.; Ekers, R.; Day, C.K.; Deller, A.T.; Flynn, C.; James, C.W.; Macquart, J.P.; et al. Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy. Astrophys. J. Lett. 2020, 901, L20. [Google Scholar] [CrossRef]
- Amiri, M.; et al. [CHIME/FRB Collaboration] Observations of fast radio bursts at frequencies down to 400 megahertz. Nature 2019, 566, 230–234. [Google Scholar]
- Amiri, M.; et al. [CHIME/FRB Collaboration] A second source of repeating fast radio bursts. Nature 2019, 566, 235–238. [Google Scholar]
- Andersen, B.C.; et al. [CHIME/FRB Collaboration] CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources. Astrophys. J. Lett. 2019, 885, L24. [Google Scholar]
- Fonseca, E.; Andersen, B.C.; Bhardwaj, M.; Chawla, P.; Good, D.C.; Josephy, A.; Kaspi, V.M.; Masui, K.W.; Mckinven, R.; Michilli, D.; et al. Nine New Repeating Fast Radio Burst Sources from CHIME/FRB. Astrophys. J. Lett. 2020, 891, L6. [Google Scholar] [CrossRef] [Green Version]
- Ravi, V.; Catha, M.; D’Addario, L.; Djorgovski, S.G.; Hallinan, G.; Hobbs, R.; Kocz, J.; Kulkarni, S.R.; Shi, J.; Vedantham, H.K.; et al. A fast radio burst localized to a massive galaxy. Nature 2019, 572, 352–354. [Google Scholar] [CrossRef]
- Connor, L.; van Leeuwen, J.; Oostrum, L.C.; Petroff, E.; Maan, Y.; Adams, E.A.K.; Attema, J.J.; Bast, J.E.; Boersma, O.M.; Dénes, H.; et al. A bright, high rotation-measure FRB that skewers the M33 halo. Mon. Not. Roy. Astron. Soc. 2020, 499, 4716–4724. [Google Scholar] [CrossRef]
- Zhu, W.; Li, D.; Luo, R.; Miao, C.; Zhang, B.; Spitler, L.; Lorimer, D.; Kramer, M.; Champion, D.; Yue, Y.; et al. A Fast Radio Burst Discovered in FAST Drift Scan Survey. Astrophys. J. Lett. 2020, 895, L6. [Google Scholar] [CrossRef]
- Niu, C.H.; Li, D.; Luo, R.; Wang, W.Y.; Yao, J.; Zhang, B.; Zhu, W.W.; Wang, P.; Ye, H.; Zhang, Y.K.; et al. CRAFTS for Fast Radio Bursts Extending the dispersion-fluence relation with new FRBs detected by FAST. arXiv 2021, arXiv:2102.10546. [Google Scholar]
- Law, C.J.; Butler, B.J.; Prochaska, J.X.; Zackay, B.; Burke-Spolaor, S.; Mannings, A.; Tejos, N.; Josephy, A.; Andersen, B.; Chawla, P.; et al. A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array. Astrophys. J. 2020, 899, 161. [Google Scholar] [CrossRef]
- Cordes, J.M.; Chatterjee, S. Fast Radio Bursts: An Extragalactic Enigma. Annu. Rev. Astron. Astrophys. 2019, 57, 417–465. [Google Scholar] [CrossRef] [Green Version]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts. Astron. Astrophys. Rev. 2019, 27, 4. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S. Progress in Understanding the Enigmatic Fast Radio Bursts. arXiv 2020, arXiv:2012.10377. [Google Scholar]
- Connor, L.; Sievers, J.; Pen, U.L. Non-cosmological FRBs from young supernova remnant pulsars. Mon. Not. R. Astron. Soc. 2016, 458, L19–L23. [Google Scholar]
- Piro, A.L. The Impact of a Supernova Remnant on Fast Radio Bursts. Astrophys. J. 2016, 824, L32. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Berger, E.; Margalit, B. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts. Astrophys. J. 2017, 841, 14. [Google Scholar] [CrossRef]
- Totani, T. Cosmological Fast Radio Bursts from Binary Neutron Star Mergers. PASJ 2013, 65, L12. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Yang, Y.P.; Wu, X.F.; Dai, Z.G.; Wang, F.Y. Fast Radio Bursts from the Inspiral of Double Neutron Stars. Astrophys. J. Lett. 2016, 822, L7. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Eroshenko, Y.N. Recurrent fast radio bursts from collisions of neutron stars in the evolved stellar clusters. arXiv 2017, arXiv:1701.02492. [Google Scholar]
- Yamasaki, S.; Totani, T.; Kiuchi, K. Repeating and non-repeating fast radio bursts from binary neutron star mergers. Publ. Astron. Soc. Jpn. 2018, 70, 39. [Google Scholar] [CrossRef] [Green Version]
- Kashiyama, K.; Ioka, K.; Mészáros, P. Cosmological Fast Radio Bursts from Binary White Dwarf Mergers. Astrophys. J. Lett. 2013, 776, L39. [Google Scholar] [CrossRef]
- Li, L.B.; Huang, Y.F.; Geng, J.J.; Li, B. A model of fast radio bursts: Collisions between episodic magnetic blobs. Res. Astron. Astrophys. 2018, 18, 061. [Google Scholar] [CrossRef] [Green Version]
- Cordes, J.; Wasserman, I. Supergiant pulses from extragalactic neutron stars. Mon. Not. R. Astron. Soc. 2016, 457, 232–257. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Postnov, K.A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. arXiv 2017, arXiv:0710.2006. [Google Scholar]
- Pen, U.L.; Connor, L. Local Circumnuclear Magnetar Solution to Extragalactic Fast Radio Bursts. Astrophys. J. 2015, 807, 179. [Google Scholar] [CrossRef]
- Vieyro, F.L.; Romero, G.E.; Bosch-Ramon, V.; Marcote, B.; del Valle, M.V. A model for the repeating FRB 121102 in the AGN scenario. Astron. Astrophys. 2017, 602, A64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. A Cosmic Comb Model of Fast Radio Bursts. Astrophys. J. Lett. 2017, 836, L32. [Google Scholar] [CrossRef] [Green Version]
- Falcke, H.; Rezzolla, L. Fast radio bursts: The last sign of supramassive neutron stars. Astron. Astrophys. 2014, 562, A137. [Google Scholar] [CrossRef] [Green Version]
- Zadorozhna, L.V. Fast radio bursts as electromagnetic radiation from cusps on superconducting cosmic strings. Adv. Astron. Space Phys. 2015, 5, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. A Possible Connection between Fast Radio Bursts and Gamma-Ray Bursts. Astrophys. J. Lett. 2014, 780, L21. [Google Scholar] [CrossRef] [Green Version]
- Lingam, M.; Loeb, A. Fast Radio Bursts from Extragalactic Light Sails. Astrophys. J. Lett. 2017, 837, L23. [Google Scholar] [CrossRef] [Green Version]
- Platts, E.; Weltman, A.; Walters, A.; Tendulkar, S.P.; Gordin, J.E.B.; Kandhai, S. A Living Theory Catalogue for Fast Radio Bursts. arXiv 2018, arXiv:1810.05836. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. The physical mechanisms of fast radio bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, F.; Dai, Z. The Physics of Fast Radio Bursts. arXiv 2021, arXiv:2101.04907. [Google Scholar]
- Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 2021, 7, 56. [Google Scholar] [CrossRef]
- Spitler, L.G.; Scholz, P.; Hessels, J.W.T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J.; et al. A repeating fast radio burst. Nature 2016, 531, 202–205. [Google Scholar] [CrossRef] [Green Version]
- Hessels, J.W.T.; Spitler, L.G.; Seymour, A.D.; Cordes, J.M.; Michilli, D.; Lynch, R.S.; Gourdji, K.; Archibald, A.M.; Bassa, C.G.; Bower, G.C.; et al. FRB 121102 Bursts Show Complex Time-Frequency Structure. Astrophys. J. Lett. 2019, 876, L23. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Law, C.J.; Wharton, R.S.; Burke-Spolaor, S.; Hessels, J.W.T.; Bower, G.C.; Cordes, J.M.; Tendulkar, S.P.; Bassa, C.G.; Demorest, P.; et al. A direct localization of a fast radio burst and its host. Nature 2017, 541, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Marcote, B.; Paragi, Z.; Hessels, J.W.T.; Keimpema, A.; van Langevelde, H.J.; Huang, Y.; Bassa, C.G.; Bogdanov, S.; Bower, G.C.; Burke-Spolaor, S.; et al. The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales. Astrophys. J. Lett. 2017, 834, L8. [Google Scholar] [CrossRef]
- Tendulkar, S.P.; Bassa, C.G.; Cordes, J.M.; Bower, G.C.; Law, C.J.; Chatterjee, S.; Adams, E.A.K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B.J.; et al. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102. Astrophys. J. Lett. 2017, 834, L7. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Shannon, R.M.; Osłowski, S.; Qiu, H.; Bhandari, S.; Farah, W.; Flynn, C.; Kerr, M.; Lorimer, D.R.; Macquart, J.P.; et al. Faint Repetitions from a Bright Fast Radio Burst Source. Astrophys. J. Lett. 2019, 887, L30. [Google Scholar] [CrossRef]
- Kumar, P.; Shannon, R.M.; Flynn, C.; Osłowski, S.; Bhandari, S.; Day, C.K.; Deller, A.T.; Farah, W.; Kaczmarek, J.F.; Kerr, M.; et al. Extremely band-limited repetition from a fast radio burst source. Mon. Not. R. Astron. Soc. 2021, 500, 2525–2531. [Google Scholar] [CrossRef]
- Amiri, M.; et al. [CHIME/FRB Collaboration] Periodic activity from a fast radio burst source. Nature 2020, 582, 351–355. [Google Scholar]
- Rajwade, K.M.; Mickaliger, M.B.; Stappers, B.W.; Morello, V.; Agarwal, D.; Bassa, C.G.; Breton, R.P.; Caleb, M.; Karastergiou, A.; Keane, E.F.; et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 2020, 495, 3551–3558. [Google Scholar] [CrossRef]
- Ioka, K.; Zhang, B. A Binary Comb Model for Periodic Fast Radio Bursts. Astrophys. J. Lett. 2020, 893, L26. [Google Scholar] [CrossRef] [Green Version]
- Lyutikov, M.; Barkov, M.V.; Giannios, D. FRB Periodicity: Mild Pulsars in Tight O/B-star Binaries. Astrophys. J. Lett. 2020, 893, L39. [Google Scholar] [CrossRef] [Green Version]
- Pleunis, Z.; Michilli, D.; Bassa, C.G.; Hessels, J.W.T.; Naidu, A.; Andersen, B.C.; Chawla, P.; Fonseca, E.; Gopinath, A.; Kaspi, V.M.; et al. LOFAR Detection of 110–188 MHz Emission and Frequency-Dependent Activity from FRB 20180916B. arXiv 2020, arXiv:2012.08372. [Google Scholar]
- Pilia, M.; Burgay, M.; Possenti, A.; Ridolfi, A.; Gajjar, V.; Corongiu, A.; Perrodin, D.; Bernardi, G.; Naldi, G.; Pupillo, G.; et al. The Lowest-frequency Fast Radio Bursts: Sardinia Radio Telescope Detection of the Periodic FRB 180916 at 328 MHz. Astrophys. J. Lett. 2020, 896, L40. [Google Scholar] [CrossRef]
- Marthi, V.R.; Gautam, T.; Li, D.; Lin, H.H.; Main, R.; Naidu, A.K.; Pen, U.L.; Wharton, R. Detection of 15 bursts from FRB 180916.J0158+65 with the uGMRT. arXiv 2020, arXiv:2007.14404. [Google Scholar]
- Gajjar, V.; Siemion, A.P.V.; Price, D.C.; Law, C.J.; Michilli, D.; Hessels, J.W.T.; Chatterjee, S.; Archibald, A.M.; Bower, G.C.; Brinkman, C.; et al. Highest Frequency Detection of FRB 121102 at 4–8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope. Astrophys. J. 2018, 863, 2. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Gaensler, B.M.; Kaspi, V.M.; Landecker, T.L.; Mckinven, R.; Michilli, D.; Pleunis, Z.; Tendulkar, S.P.; Andersen, B.C.; Boyle, P.J.; et al. A nearby repeating fast radio burst in the direction of M81. arXiv 2021, arXiv:2103.01295. [Google Scholar]
- Caleb, M. Radio observations of FRBs. Submitted to universe, 2021. [Google Scholar]
- Andersen, B.C.; et al. [CHIME/FRB Collaboration] A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef]
- Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Götz, D.; Rigoselli, M.; Tiengo, A.; Bazzano, A.; Bozzo, E.; Coleiro, A.; Courvoisier, T.J.L.; et al. INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophys. J. Lett. 2020, 898, L29. [Google Scholar] [CrossRef]
- Kulkarni, S.R. Dispersion measure: Confusion, Constants & Clarity. arXiv 2020, arXiv:2007.02886. [Google Scholar]
- Williamson, I.P. Pulse broadening due to multiple scattering in the interstellarmedium. Mon. Not. R. Astron. Soc. 1972, 157, 55. [Google Scholar] [CrossRef] [Green Version]
- Farah, W.; Flynn, C.; Bailes, M.; Jameson, A.; Bannister, K.W.; Barr, E.D.; Bateman, T.; Bhand ari, S.; Caleb, M.; Campbell-Wilson, D.; et al. FRB microstructure revealed by the real-time detection of FRB170827. Mon. Not. R. Astron. Soc. 2018, 478, 1209–1217. [Google Scholar] [CrossRef]
- Bhat, N.D.R.; Cordes, J.M.; Camilo, F.; Nice, D.J.; Lorimer, D.R. Multifrequency Observations of Radio Pulse Broadening and Constraints on Interstellar Electron Density Microstructure. Astrophys. J. 2004, 605, 759–783. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Shannon, R.M.; Farah, W.; Macquart, J.P.; Deller, A.T.; Bannister, K.W.; James, C.W.; Flynn, C.; Day, C.K.; Bhandari, S.; et al. A population analysis of pulse broadening in ASKAP fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 497, 1382–1390. [Google Scholar] [CrossRef]
- Ravi, V.; Shannon, R.M.; Bailes, M.; Bannister, K.; Bhandari, S.; Bhat, N.D.R.; Burke-Spolaor, S.; Caleb, M.; Flynn, C.; Jameson, A.; et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 2016, 354, 1249–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordes, J.M.; Wasserman, I.; Hessels, J.W.T.; Lazio, T.J.W.; Chatterjee, S.; Wharton, R.S. Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies. Astrophys. J. 2017, 842, 35. [Google Scholar] [CrossRef]
- Caleb, M.; Keane, E.F.; van Straten, W.; Kramer, M.; Macquart, J.P.; Bailes, M.; Barr, E.D.; Bhat, N.D.R.; Bhandari, S.; Burgay, M.; et al. The SUrvey for Pulsars and Extragalactic Radio Bursts—III. Polarization properties of FRBs 160102 and 151230. Mon. Not. R. Astron. Soc. 2018, 478, 2046–2055. [Google Scholar] [CrossRef] [Green Version]
- Day, C.K.; Deller, A.T.; Shannon, R.M.; Qiu, H.; Bannister, K.W.; Bhandari, S.; Ekers, R.; Flynn, C.; James, C.W.; Macquart, J.P.; et al. High time resolution and polarization properties of ASKAP-localized fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 497, 3335–3350. [Google Scholar] [CrossRef]
- Michilli, D.; Seymour, A.; Hessels, J.W.T.; Spitler, L.G.; Gajjar, V.; Archibald, A.M.; Bower, G.C.; Chatterjee, S.; Cordes, J.M.; Gourdji, K.; et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 2018, 553, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Noutsos, A.; Johnston, S.; Kramer, M.; Karastergiou, A. New pulsar rotation measures and the Galactic magnetic field. Mon. Not. R. Astron. Soc. 2008, 386, 1881–1896. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.H. Big bang nucleosynthesis: Present status. Rev. Mod. Phys. 2016, 88, 015004. [Google Scholar] [CrossRef]
- Ade, P.A.R.; et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Weinberg, D.H.; Miralda-Escudé, J.; Hernquist, L.; Katz, N. A Lower Bound on the Cosmic Baryon Density. Astrophys. J. 1997, 490, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Rauch, M.; Miralda-Escude, J.; Sargent, W.L.W.; Barlow, T.A.; Weinberg, D.H.; Hernquist, L.; Katz, N.; Cen, R.; Ostriker, J.P. The Opacity of the Lyα Forest and Implications for Ωb and the Ionizing Background. Astrophys. J. 1997, 489, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Fukugita, M.; Peebles, P.J.E. The Cosmic Energy Inventory. Astrophys. J. 2004, 616, 643–668. [Google Scholar] [CrossRef]
- Nicastro, F.; Mathur, S.; Elvis, M. Missing Baryons and the Warm-Hot Intergalactic Medium. Science 2008, 319, 55–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shull, J.M.; Smith, B.D.; Danforth, C.W. The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing. Astrophys. J. 2012, 759, 23. [Google Scholar] [CrossRef] [Green Version]
- Bregman, J.N. The Search for the Missing Baryons at Low Redshift. Annu. Rev. Astron. Astrophys. 2007, 45, 221–259. [Google Scholar] [CrossRef] [Green Version]
- McQuinn, M. The Evolution of the Intergalactic Medium. Annu. Rev. Astron. Astrophys. 2016, 54, 313–362. [Google Scholar] [CrossRef] [Green Version]
- Cen, R.; Ostriker, J.P. Where Are the Baryons? II. Feedback Effects. Astrophys. J. 2006, 650, 560–572. [Google Scholar] [CrossRef] [Green Version]
- Cen, R.; Ostriker, J.P. Where Are the Baryons? Astrophys. J. 1999, 514, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Penton, S.V.; Stocke, J.T.; Shull, J.M. The Local Lyα Forest. IV. Space Telescope Imaging Spectrograph G140M Spectra and Results on the Distribution and Baryon Content of H i Absorbers. Astrophys. J. Suppl. Ser. 2004, 152, 29–62. [Google Scholar] [CrossRef] [Green Version]
- Viel, M.; Branchini, E.; Cen, R.; Ostriker, J.P.; Matarrese, S.; Mazzotta, P.; Tully, B. Tracing the warm-hot intergalactic medium in the local universe. Mon. Not. R. Astron. Soc. 2005, 360, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Shull, J.M.; Wang, Q.D.; Cash, W. Detecting the warm-hot intergalactic medium through X-ray absorption lines. Astrophys. J. 2012, 746, 166. [Google Scholar] [CrossRef] [Green Version]
- Vernstrom, T.; Heald, G.; Vazza, F.; Galvin, T.; West, J.; Locatelli, N.; Fornengo, N.; Pinetti, E. Discovery of Magnetic Fields Along Stacked Cosmic Filaments as Revealed by Radio and X-Ray Emission. arXiv 2021, arXiv:2101.09331. [Google Scholar]
- Tejos, N.; Prochaska, J.X.; Crighton, N.H.M.; Morris, S.L.; Werk, J.K.; Theuns, T.; Padilla, N.; Bielby, R.M.; Finn, C.W. Towards the statistical detection of the warm-hot intergalactic medium in intercluster filaments of the cosmic web. Mon. Not. R. Astron. Soc. 2016, 455, 2662–2697. [Google Scholar] [CrossRef]
- Pessa, I.; Tejos, N.; Barrientos, L.F.; Werk, J.; Bielby, R.; Padilla, N.; Morris, S.L.; Prochaska, J.X.; Lopez, S.; Hummels, C. A VLT/MUSE galaxy survey towards QSO Q1410: Looking for a WHIM traced by BLAs in intercluster filaments. Mon. Not. R. Astron. Soc. 2018, 477, 2991–3013. [Google Scholar] [CrossRef] [Green Version]
- Nicastro, F.; Kaastra, J.; Krongold, Y.; Borgani, S.; Branchini, E.; Cen, R.; Dadina, M.; Danforth, C.W.; Elvis, M.; Fiore, F. Observations of the missing baryons in the warm-hot intergalactic medium. Nature 2018, 558, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Zeldovich, Y.B.; Sunyaev, R.A. The Interaction of Matter and Radiation in a Hot-Model universe. Astrophys. Space Sci. 1969, 4, 301–316. [Google Scholar] [CrossRef]
- Tanimura, H.; Hinshaw, G.; McCarthy, I.G.; Van Waerbeke, L.; Aghanim, N.; Ma, Y.Z.; Mead, A.; Hojjati, A.; Tröster, T. A search for warm/hot gas filaments between pairs of SDSS Luminous Red Galaxies. Mon. Not. R. Astron. Soc. 2018, 483, 223–234. [Google Scholar] [CrossRef] [Green Version]
- De Graaff, A.; Cai, Y.C.; Heymans, C.; Peacock, J.A. Probing the missing baryons with the Sunyaev-Zel’dovich effect from filaments. Astron. Astrophys. 2019, 624, A48. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Zhang, B. Cosmological Implications of Fast Radio Burst/Gamma-Ray Burst Associations. Astrophys. J. Lett. 2014, 783, L35. [Google Scholar] [CrossRef] [Green Version]
- McQuinn, M. Locating the “Missing” Baryons with Extragalactic Dispersion Measure Estimates. Astrophys. J. Lett. 2014, 780, L33. [Google Scholar] [CrossRef] [Green Version]
- Ioka, K. The Cosmic Dispersion Measure from Gamma-Ray Burst Afterglows: Probing the Reionization History and the Burst Environment. Astrophys. J. Lett. 2003, 598, L79–L82. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S. Probing the cosmic reionization history and local environment of gamma-ray bursts through radio dispersion. Mon. Not. R. Astron. Soc. 2004, 348, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Shull, J.M.; Danforth, C.W. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5. Astrophys. J. Lett. 2018, 852, L11. [Google Scholar]
- Zhang, B. Fast Radio Burst Energetics and Detectability from High Redshifts. Astrophys. J. Lett. 2018, 867, L21. [Google Scholar] [CrossRef] [Green Version]
- Macquart, J.P.; Keane, E.; Grainge, K.; McQuinn, M.; Fender, R.; Hessels, J.; Deller, A.; Bhat, R.; Breton, R.; Chatterjee, S. Fast Transients at Cosmological Distances with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14). arXiv 2017, arXiv:1501.07535. [Google Scholar]
- Dolag, K.; Gaensler, B.M.; Beck, A.M.; Beck, M.C. Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 2015, 451, 4277–4289. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Ioka, K.; Mori, A.; Funahashi, K. Statistical modelling of the cosmological dispersion measure. Mon. Not. R. Astron. Soc. 2021, 502, 2615–2629. [Google Scholar] [CrossRef]
- Jaroszynski, M. Fast radio bursts and cosmological tests. Mon. Not. R. Astron. Soc. 2019, 484, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.J.; Yan, K.; Li, C.M.; Zhang, G.Q.; Wang, F.Y. Intergalactic Medium Dispersion Measures of Fast Radio Bursts Estimated from IllustrisTNG Simulation and Their Cosmological Applications. Astrophys. J. 2021, 906, 49. [Google Scholar] [CrossRef]
- Batten, A.J.; Duffy, A.R.; Wijers, N.; Gupta, V.; Flynn, C.; Schaye, J.; Ryan-Weber, E. The Cosmic Dispersion Measure in the EAGLE Simulations. arXiv 2020, arXiv:2011.14547. [Google Scholar]
- Prochaska, J.X.; Zheng, Y. Probing Galactic haloes with fast radio bursts. Mon. Not. R. Astron. Soc. 2019, 485, 648–665. [Google Scholar]
- Marcote, B.; Nimmo, K.; Hessels, J.W.T.; Tendulkar, S.P.; Bassa, C.G.; Paragi, Z.; Keimpema, A.; Bhardwaj, M.; Karuppusamy, R.; Kaspi, V.M.; et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 2020, 577, 190–194. [Google Scholar] [CrossRef]
- James, C.W.; Prochaska, J.X.; Macquart, J.P.; North-Hickey, F.; Bannister, K.W.; Dunning, A. The z–DM distribution of fast radio bursts. arXiv 2021, arXiv:2101.08005. [Google Scholar]
- Xu, S.; Zhang, B. Probing the Intergalactic Turbulence with Fast Radio Bursts. Astrophys. J. Lett. 2020, 898, L48. [Google Scholar] [CrossRef]
- Cordes, J.M.; Wharton, R.S.; Spitler, L.G.; Chatterjee, S.; Wasserman, I. Radio Wave Propagation and the Provenance of Fast Radio Bursts. arXiv 2016, arXiv:1605.05890. [Google Scholar]
- Cordes, J.M.; Lazio, T.J.W. NE2001.I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations. arXiv 2002, arXiv:astro-ph/0207156. [Google Scholar]
- Petroff, E.; van Straten, W.; Johnston, S.; Bailes, M.; Barr, E.D.; Bates, S.D.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; et al. An Absence of Fast Radio Bursts at Intermediate Galactic Latitudes. Astrophys. J. Lett. 2014, 789, L26. [Google Scholar] [CrossRef] [Green Version]
- Macquart, J.P.; Johnston, S. On the paucity of fast radio bursts at low Galactic latitudes. Mon. Not. R. Astron. Soc. 2015, 451, 3278–3286. [Google Scholar] [CrossRef] [Green Version]
- Koch Ocker, S.; Cordes, J.M.; Chatterjee, S. Constraining Galaxy Haloes from the Dispersion and Scattering of Fast Radio Bursts and Pulsars. arXiv 2021, arXiv:2101.04784. [Google Scholar]
- Nimmo, K.; Hessels, J.W.T.; Keimpema, A.; Archibald, A.M.; Cordes, J.M.; Karuppusamy, R.; Kirsten, F.; Li, D.Z.; Marcote, B.; Paragi, Z. Highly polarised microstructure from the repeating FRB 20180916B. arXiv 2020, arXiv:2010.05800. [Google Scholar]
- Prochaska, J.X.; Neeleman, M.; Kanekar, N.; Rafelski, M. ALMA C II 158 μm Imaging of an H I-selected Major Merger at z ∼ 4. Astrophys. J. Lett. 2019, 886, L35. [Google Scholar] [CrossRef]
- Macquart, J.P.; Koay, J.Y. Temporal Smearing of Transient Radio Sources by the Intergalactic Medium. Astrophys. J. 2013, 776, 125. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Feng, L.L.; Zhang, F. The Scattering of FRBs by the Intergalactic Medium: Variations, Strength, and Dependence on Dispersion Measures. Astrophys. J. 2018, 865, 147. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Feng, L.L. The Dispersion Measure and Scattering of Fast Radio Bursts: Contributions from the Intergalactic Medium, Foreground Halos, and Hosts. Astrophys. J. 2021, 906, 95. [Google Scholar] [CrossRef]
- Katz, J.I. Inferences from the Distributions of Fast Radio Burst Pulse Widths, Dispersion Measures, and Fluences. Astrophys. J. 2016, 818, 19. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhang, B. On the Origin of the Scatter Broadening of Fast Radio Burst Pulses and Astrophysical Implications. Astrophys. J. 2016, 832, 199. [Google Scholar] [CrossRef]
- Chittidi, J.S.; Simha, S.; Mannings, A.; Prochaska, J.X.; Rafelski, M.; Neeleman, M.; Macquart, J.P.; Tejos, N.; Jorgenson, R.A.; Ryder, S.D.; et al. Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy. arXiv 2020, arXiv:2005.13158. [Google Scholar]
- Simha, S.; Burchett, J.N.; Prochaska, J.X.; Chittidi, J.S.; Elek, O.; Tejos, N.; Jorgenson, R.; Bannister, K.W.; Bhandari, S.; Day, C.K.; et al. Disentangling the Cosmic Web toward FRB 190608. Astrophys. J. 2020, 901, 134. [Google Scholar] [CrossRef]
- Yao, J.M.; Manchester, R.N.; Wang, N. A New Electron-density Model for Estimation of Pulsar and FRB Distances. Astrophys. J. 2017, 835, 29. [Google Scholar] [CrossRef] [Green Version]
- Akahori, T.; Ryu, D.; Gaensler, B.M. Fast Radio Bursts as Probes of Magnetic Fields in the Intergalactic Medium. Astrophys. J. 2016, 824, 105. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Hinz, P.M.; Wittor, D.; Locatelli, N.; Gheller, C. Probing the origin of extragalactic magnetic fields with Fast Radio Bursts. Mon. Not. R. Astron. Soc. 2018, 480, 3907–3915. [Google Scholar] [CrossRef]
- Hackstein, S.; Brüggen, M.; Vazza, F.; Gaensler, B.M.; Heesen, V. Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields. Mon. Not. R. Astron. Soc. 2019, 488, 4220–4238. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Y.; Zhang, B.; Chen, X.; Xu, R. On the magnetoionic environments of fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 499, 355–361. [Google Scholar] [CrossRef]
- Somerville, R.S.; Davé, R. Physical Models of Galaxy Formation in a Cosmological Framework. Annu. Rev. Astron. Astrophys. 2015, 53, 51–113. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.E.; Bregman, J.N.; Dai, X. Extended Hot Halos around Isolated Galaxies Observed in the ROSAT All-Sky Survey. Astrophys. J. 2013, 762, 106. [Google Scholar] [CrossRef] [Green Version]
- Tumlinson, J.; Thom, C.; Werk, J.K.; Prochaska, J.X.; Tripp, T.M.; Katz, N.; Davé, R.; Oppenheimer, B.D.; Meiring, J.D.; Ford, A.B.; et al. The COS-Halos Survey: Rationale, Design, and a Census of Circumgalactic Neutral Hydrogen. Astrophys. J. 2013, 777, 59. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Weiner, B.; Chen, H.W.; Mulchaey, J.; Cooksey, K. Probing the Intergalactic Medium/Galaxy Connection. V. On the Origin of Lyα and O VI Absorption at z < 0.2. Astrophys. J. 2011, 740, 91. [Google Scholar]
- Tumlinson, J.; Peeples, M.S.; Werk, J.K. The Circumgalactic Medium. Annu. Rev. Astron. Astrophys. 2017, 55, 389–432. [Google Scholar] [CrossRef] [Green Version]
- Fukugita, M.; Peebles, P.J.E. Massive Coronae of Galaxies. Astrophys. J. 2006, 639, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Faerman, Y.; Sternberg, A.; McKee, C.F. Massive Warm/Hot Galaxy Coronae as Probed by UV/X-Ray Oxygen Absorption and Emission. I. Basic Model. Astrophys. J. 2017, 835, 52. [Google Scholar] [CrossRef] [Green Version]
- Maller, A.H.; Bullock, J.S. Multiphase galaxy formation: High-velocity clouds and the missing baryon problem. Mon. Not. R. Astron. Soc. 2004, 355, 694–712. [Google Scholar] [CrossRef] [Green Version]
- Voit, G.M.; Donahue, M.; Bryan, G.L.; McDonald, M. Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 2015, 519, 203–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, J.; Hennawi, J.F.; Prochaska, J.X.; Werk, J.K. A Universal Density Structure for Circumgalactic Gas. Astrophys. J. 2016, 830, 87. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.J.; Remming, I. On the model of the circumgalactic mist: The implications of cloud sizes in galactic winds and haloes. Mon. Not. R. Astron. Soc. 2020, 491, 5056–5072. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, K.C.; Nath, B.B.; Sharma, P. Multiwavelength features of Fermi bubbles as signatures of a Galactic wind. Mon. Not. R. Astron. Soc. 2015, 453, 3827–3838. [Google Scholar] [CrossRef] [Green Version]
- Fielding, D.; Quataert, E.; McCourt, M.; Thompson, T.A. The impact of star formation feedback on the circumgalactic medium. Mon. Not. R. Astron. Soc. 2017, 466, 3810–3826. [Google Scholar] [CrossRef] [Green Version]
- Butsky, I.S.; Quinn, T.R. The Role of Cosmic-ray Transport in Shaping the Simulated Circumgalactic Medium. Astrophys. J. 2018, 868, 108. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, B.D.; Davé, R. Cosmological simulations of intergalactic medium enrichment from galactic outflows. Mon. Not. R. Astron. Soc. 2006, 373, 1265–1292. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Macquart, J.P.; McQuinn, M.; Simha, S.; Shannon, R.M.; Day, C.K.; Marnoch, L.; Ryder, S.; Deller, A.; Bannister, K.W.; et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 2019, 366, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernet, M.L.; Miniati, F.; Lilly, S.J.; Kronberg, P.P.; Dessauges-Zavadsky, M. Strong magnetic fields in normal galaxies at high redshift. Nature 2008, 454, 302–304. [Google Scholar] [CrossRef]
- Woodfinden, A.; Henriksen, R.N.; Irwin, J.; Mora-Partiarroyo, S.C. Evolving galactic dynamos and fits to the reversing rotation measures in the halo of NGC 4631. Mon. Not. R. Astron. Soc. 2019, 487, 1498–1516. [Google Scholar] [CrossRef]
- Cantalupo, S.; Arrigoni-Battaia, F.; Prochaska, J.X.; Hennawi, J.F.; Madau, P. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar. Nature 2014, 506, 63–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werk, J.K.; Prochaska, J.X.; Tumlinson, J.; Peeples, M.S.; Tripp, T.M.; Fox, A.J.; Lehner, N.; Thom, C.; O’Meara, J.M.; Ford, A.B.; et al. The COS-Halos Survey: Physical Conditions and Baryonic Mass in the Low-redshift Circumgalactic Medium. Astrophys. J. 2014, 792, 8. [Google Scholar] [CrossRef]
- Lan, T.W.; Fukugita, M. Mg II Absorbers: Metallicity Evolution and Cloud Morphology. Astrophys. J. 2017, 850, 156. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.R.; Kofman, L.; Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 1996, 380, 603–606. [Google Scholar] [CrossRef]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, B.; Nagamine, K.; Shi, J. The FRB 121102 Host Is Atypical among Nearby Fast Radio Bursts. Astrophys. J. Lett. 2019, 884, L26. [Google Scholar] [CrossRef] [Green Version]
- Ravi, V. Measuring the Circumgalactic and Intergalactic Baryon Contents with Fast Radio Bursts. Astrophys. J. 2019, 872, 88. [Google Scholar] [CrossRef] [Green Version]
- Nicastro, L.; Guidorzi, C.; Palazzi, E.; Zampieri, L.; Turatto, M.; Gardini, A. Multiwavelength Observations of Fast Radio Bursts. Universe 2021, 7, 76. [Google Scholar] [CrossRef]
- Hilmarsson, G.H.; Michilli, D.; Spitler, L.G.; Wharton, R.S.; Demorest, P.; Desvignes, G.; Gourdji, K.; Hackstein, S.; Hessels, J.W.T.; Nimmo, K.; et al. Rotation Measure Evolution of the Repeating Fast Radio Burst Source FRB 121102. arXiv 2020, arXiv:2009.12135. [Google Scholar]
- Margalit, B.; Metzger, B.D. A Concordance Picture of FRB 121102 as a Flaring Magnetar Embedded in a Magnetized Ion-Electron Wind Nebula. Astrophys. J. 2018, 868, L4. [Google Scholar] [CrossRef] [Green Version]
- Tendulkar, S.P.; Gil de Paz, A.; Kirichenko, A.Y.; Hessels, J.W.T.; Bhardwaj, M.; Ávila, F.; Bassa, C.; Chawla, P.; Fonseca, E.; Kaspi, V.M.; et al. The 60-pc Environment of FRB 20180916B. arXiv 2020, arXiv:2011.03257. [Google Scholar]
- Bhandari, S.; Sadler, E.M.; Prochaska, J.X.; Simha, S.; Ryder, S.D.; Marnoch, L.; Bannister, K.W.; Macquart, J.P.; Flynn, C.; Shannon, R.M.; et al. The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder. Astrophys. J. Lett. 2020, 895, L37. [Google Scholar] [CrossRef]
- Heintz, K.E.; Prochaska, J.X.; Simha, S.; Platts, E.; Fong, W.F.; Tejos, N.; Ryder, S.D.; Aggarwal, K.; Bhandari, S.; Day, C.K.; et al. Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for their Progenitors. arXiv 2020, arXiv:2009.10747. [Google Scholar]
- Li, Y.; Zhang, B. A Comparative Study of Host Galaxy Properties between Fast Radio Bursts and Stellar Transients. Astrophys. J. Lett. 2020, 899, L6. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, Y.Y.; Yang, Y.P.; Yu, Y.W.; Zuo, Z.Y.; Dai, Z.G. Fast Radio Bursts from Activity of Neutron Stars Newborn in BNS Mergers: Offset, Birth Rate, and Observational Properties. Astrophys. J. 2020, 891, 72. [Google Scholar] [CrossRef] [Green Version]
- Mannings, A.G.; Fong, W.F.; Simha, S.; Prochaska, J.X.; Rafelski, M.; Kilpatrick, C.D.; Tejos, N.; Heintz, K.E.; Bhandari, S.; Day, C.K.; et al. A High-Resolution View of Fast Radio Burst Host Environments. arXiv 2020, arXiv:2012.11617. [Google Scholar]
- Bochenek, C.D.; Ravi, V.; Dong, D. Localized Fast Radio Bursts Are Consistent with Magnetar Progenitors Formed in Core-collapse Supernovae. Astrophys. J. Lett. 2021, 907, L31. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Prochaska, J.X.; Heintz, K.E.; Fong, W.f. Confronting the Magnetar Interpretation of Fast Radio Bursts through Their Host Galaxy Demographics. Astrophys. J. Lett. 2020, 905, L30. [Google Scholar] [CrossRef]
- Sridhar, N.; Metzger, B.D.; Beniamini, P.; Margalit, B.; Renzo, M.; Sironi, L. Periodic Fast Radio Bursts from ULX-Like Binaries. arXiv 2021, arXiv:2102.06138. [Google Scholar]
- Xu, J.; Han, J.L. Extragalactic dispersion measures of fast radio bursts. Res. Astron. Astrophys. 2015, 15, 1629–1638. [Google Scholar] [CrossRef] [Green Version]
- Güver, T.; Özel, F. The relation between optical extinction and hydrogen column density in the Galaxy. Mon. Not. R. Astron. Soc. 2009, 400, 2050–2053. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Ng, C.Y.; Kaspi, V.M. The Correlation between Dispersion Measure and X-Ray Column Density from Radio Pulsars. Astrophys. J. 2013, 768, 64. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Gao, H.; Wei, J.J.; Yang, Y.P.; Zhang, B.; Zhu, Z.H. Cosmology-insensitive estimate of IGM baryon mass fraction from five localized fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 496, L28–L32. [Google Scholar] [CrossRef]
- Yang, Y.P.; Zhang, B. Extracting host galaxy dispersion measure and constraining cosmological parameters using fast radio burst data. Astrophys. J. 2016, 830, L31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Yu, H.; He, J.H.; Wang, F.Y. Dispersion Measures of Fast Radio Burst Host Galaxies Derived from IllustrisTNG Simulation. Astrophys. J. 2020, 900, 170. [Google Scholar] [CrossRef]
- Jaroszyński, M. FRBs: The Dispersion Measure of Host Galaxies. arXiv 2020, arXiv:2008.04634. [Google Scholar]
- Binney, J.; Tremaine, S. Galactic Dynamics, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Flynn, C.; Holmberg, J.; Portinari, L.; Fuchs, B.; Jahreiß, H. On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy. Mon. Not. R. Astron. Soc. 2006, 372, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Platts, E.; Prochaska, J.X.; Law, C.J. A Data-driven Technique Using Millisecond Transients to Measure the Milky Way Halo. Astrophys. J. Lett. 2020, 895, L49. [Google Scholar] [CrossRef]
- Nakashima, S.; Inoue, Y.; Yamasaki, N.; Sofue, Y.; Kataoka, J.; Sakai, K. Spatial Distribution of the Milky Way Hot Gaseous Halo Constrained by Suzaku X-Ray Observations. Astrophys. J. 2018, 862, 34. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S.; Totani, T. The Galactic Halo Contribution to the Dispersion Measure of Extragalactic Fast Radio Bursts. Astrophys. J. 2020, 888, 105. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Li, Z.; Zhang, B. Fast Radio Burst/Gamma-Ray Burst Cosmography. Astrophys. J. 2014, 788, 189. [Google Scholar] [CrossRef]
- Zhou, B.; Li, X.; Wang, T.; Fan, Y.Z.; Wei, D.M. Fast radio bursts as a cosmic probe? Phys. Rev. D 2014, 89, 107303. [Google Scholar] [CrossRef] [Green Version]
- Walters, A.; Weltman, A.; Gaensler, B.M.; Ma, Y.Z.; Witzemann, A. Future Cosmological Constraints From Fast Radio Bursts. Astrophys. J. 2018, 856, 65. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.W.; Li, Z.X.; Qi, J.Z.; Gao, H.; Zhang, J.F.; Zhang, X. Cosmological Parameter Estimation for Dynamical Dark Energy Models with Future Fast Radio Burst Observations. Astrophys. J. 2020, 903, 83. [Google Scholar] [CrossRef]
- Kumar, P.; Linder, E.V. Use of fast radio burst dispersion measures as distance measures. Phys. Rev. D 2019, 100, 083533. [Google Scholar] [CrossRef] [Green Version]
- Freedman, W.L.; Madore, B.F.; Gibson, B.K.; Ferrarese, L.; Kelson, D.D.; Sakai, S.; Mould, J.R.; Kennicutt, R.C., Jr.; Ford, H.C.; Graham, J.A.; et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. Astrophys. J. 2001, 553, 47–72. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% Determination of the Local Value of the Hubble Constant. Astrophys. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Suyu, S.H.; Bonvin, V.; Courbin, F.; Fassnacht, C.D.; Rusu, C.E.; Sluse, D.; Treu, T.; Wong, K.C.; Auger, M.W.; Ding, X.; et al. H0LiCOW—I. H0 Lenses in COSMOGRAIL’s Wellspring: Program overview. Mon. Not. R. Astron. Soc. 2017, 468, 2590–2604. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Bowers, J.B.; Macri, L.; Zinn, J.C.; Scolnic, D. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. Astrophys. J. 2021, 908, L6. [Google Scholar] [CrossRef]
- Sammons, M.W.; Macquart, J.P.; Ekers, R.D.; Shannon, R.M.; Cho, H.; Prochaska, J.X.; Deller, A.T.; Day, C.K. First Constraints on Compact Dark Matter from Fast Radio Burst Microstructure. Astrophys. J. 2020, 900, 122. [Google Scholar] [CrossRef]
- Cho, H.; Macquart, J.P.; Shannon, R.M.; Deller, A.T.; Morrison, I.S.; Ekers, R.D.; Bannister, K.W.; Farah, W.; Qiu, H.; Sammons, M.W.; et al. Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications for Fast Radio Burst Emission Mechanism. Astrophys. J. Lett. 2020, 891, L38. [Google Scholar] [CrossRef]
- Li, Z.X.; Gao, H.; Ding, X.H.; Wang, G.J.; Zhang, B. Strongly lensed repeating fast radio bursts as precision probes of the universe. Nat. Commun. 2018, 9, 3833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitrin, A.; Eichler, D. Observing Cosmological Processes in Real Time with Repeating Fast Radio Bursts. Astrophys. J. 2018, 866, 101. [Google Scholar] [CrossRef]
- Wagner, J.; Liesenborgs, J.; Eichler, D. Multiply imaged time-varying sources behind galaxy clusters. Comparing fast radio bursts to QSOs, SNe, and GRBs. Astron. Astrophys. 2019, 621, A91. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Yu, H.; Wang, F.Y. A New Method to Measure Hubble Parameter H(z) Using Fast Radio Bursts. Astrophys. J. 2020, 895, 33. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175–194. [Google Scholar] [CrossRef] [Green Version]
- Fialkov, A.; Loeb, A. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients. J. Cosmol. Astropart. Phys. 2016, 2016, 004. [Google Scholar] [CrossRef] [Green Version]
- Syphers, D.; Anderson, S.F.; Zheng, W.; Smith, B.; Pieri, M.; Kriss, G.A.; Meiksin, A.; Schneider, D.P.; Shull, J.M.; York, D.G. He II Lyβ Gunn-Peterson absorption new HST observations and theortical expectations. Astrophys. J. 2011, 742, 99. [Google Scholar] [CrossRef] [Green Version]
- Plante, P.; Trac, H.; Croft, R. Helium Reionization Simulations. III. The Helium Lyman-α Forest. Astrophys. J. 2017, 868. [Google Scholar]
- McQuinn, M.; Lidz, A.; Zaldarriaga, M.; Hernquist, L.; Hopkins, P.F.; Dutta, S.; Faucher-Giguère, C.A. He II Reionization and its Effect on the Intergalactic Medium. Astrophys. J. 2009, 694, 842–866. [Google Scholar] [CrossRef]
- Zheng, Z.; Ofek, E.O.; Kulkarni, S.R.; Neill, J.D.; Juric, M. Probing the Intergalactic Medium with Fast Radio Bursts. Astrophys. J. 2014, 797, 71. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Detecting helium reionization with fast radio bursts. Phys. Rev. D 2020, 101, 103019. [Google Scholar] [CrossRef]
- Kit Lau, A.W.; Mitra, A.; Shafiee, M.; Smoot, G. Constraining HeII Reionization Detection Uncertainties via Fast Radio Bursts. arXiv 2020, arXiv:2006.11072. [Google Scholar]
- Caleb, M.; Flynn, C.; Stappers, B.W. Constraining the era of helium reionization using fast radio bursts. Mon. Not. R. Astron. Soc. 2019, 485, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Kumar, P.; Linder, E.V. Fast Radio Burst Dispersion Measure Distribution as a Probe of Helium Reionization. arXiv 2020, arXiv:2010.14530. [Google Scholar]
- Dai, J.P.; Xia, J.Q. Reconstruction of Reionization History through Dispersion Measure of Fast Radio Bursts. arXiv 2020, arXiv:2004.11276. [Google Scholar]
- Pagano, M.; Fronenberg, H. Constraining the Epoch of Reionization With Highly Dispersed Fast Radio Bursts. arXiv 2021, arXiv:2103.03252. [Google Scholar]
- Hashimoto, T.; Goto, T.; Lu, T.Y.; On, A.Y.L.; Santos, D.J.D.; Kim, S.J.; Eser, E.K.; Ho, S.C.C.; Hsiao, T.Y.Y.; Lin, L.Y.W. Revealing the cosmic reionization history with fast radio bursts in the era of Square Kilometre Array. Mon. Not. R. Astron. Soc. 2021, 502, 2346–2355. [Google Scholar] [CrossRef]
- Ravi, V.; Battaglia, N.; Burke-Spolaor, S.; Chatterjee, S.; Cordes, J.; Hallinan, G.; Law, C.; Lazio, T.J.W.; Masui, K.; McQuinn, M.; et al. Fast Radio Burst Tomography of the Unseen universe. arXiv 2019, arXiv:1903.06535. [Google Scholar]
- Abbott, T.M.C.; Abdalla, F.B.; Allam, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; Ballester, O.; Banerji, M.; Barkhouse, W.; et al. The Dark Energy Survey: Data Release 1. Astrophys. J. Suppl. Ser. 2018, 239, 18. [Google Scholar] [CrossRef]
- Rafiei-Ravandi, M.; et al. [The Chime/Frb Collaboration] Cross-correlating the First CHIME/FRB Catalog with Photometric Redshift Catalogs of Galaxies. Available online: https://ui.adsabs.harvard.edu/abs/2021AAS...23751001R/abstract (accessed on 29 March 2020).
- Burke-Spolaor, S. Multiple messengers of fast radio bursts. Nat. Astron. 2018, 2, 845–848. [Google Scholar] [CrossRef]
- Wang, M.H.; Ai, S.K.; Li, Z.X.; Xing, N.; Gao, H.; Zhang, B. Testing the Hypothesis of a Compact-binary-coalescence Origin of Fast Radio Bursts Using a Multimessenger Approach. Astrophys. J. Lett. 2020, 891, L39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. Fast Radio Bursts from Interacting Binary Neutron Star Systems. Astrophys. J. Lett. 2020, 890, L24. [Google Scholar] [CrossRef] [Green Version]
- Margalit, B.; Berger, E.; Metzger, B.D. Fast Radio Bursts from Magnetars Born in Binary Neutron Star Mergers and Accretion Induced Collapse. Astrophys. J. 2019, 886, 110. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, K.; Budavári, T.; Deller, A.T.; Eftekhari, T.; James, C.W.; Prochaska, J.X.; Tendulkar, S.P. Probabilistic Association of Transients to their Hosts (PATH). arXiv 2021, arXiv:2102.10627. [Google Scholar]
- Sanidas, S.; Caleb, M.; Driessen, L.; Morello, V.; Rajwade, K.; Stappers, B.W. MeerTRAP: A pulsar and fast transients survey with MeerKAT. Proc. Int. Astron. Union 2017, 13, 406–407. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.S.; Kerr, M.; Bethapudi, S.; Clarke, T.E.; Kassim, N.E.; Taylor, G.B.; Dowell, J.; Deneva, J.S. First Detections from VLITE-FAST: A 350-MHz Commensal System for Detecting and Localizing Fast Radio Transients with the JVLA. Available online: https://ui.adsabs.harvard.edu/abs/2021AAS...23754201R/abstract (accessed on 29 March 2020).
- Maan, Y.; van Leeuwen, J. Real-time searches for fast transients with Apertif and LOFAR. In Proceedings of the 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, USA, 19–26 August 2017; p. 2. [Google Scholar]
- Deller, A.; Flynn, C. Vintage telescope rebooted in the hunt for FRBs. Nat. Astron. 2020, 4, 292. [Google Scholar] [CrossRef]
- Hallinan, G.; Ravi, V.; Weinreb, S.; Kocz, J.; Huang, Y.; Woody, D.P.; Lamb, J.; D’Addario, L.; Catha, M.; Law, C.; et al. The DSA-2000—A Radio Survey Camera. arXiv 2019, arXiv:1907.07648. [Google Scholar]
- Newburgh, L.B.; Bandura, K.; Bucher, M.A.; Chang, T.C.; Chiang, H.C.; Cliche, J.F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K.M.; et al. HIRAX: A probe of dark energy and radio transients. In Proceedings of the Ground-Based and Airborne Telescopes VI, Edinburgh, UK, 26 June–1 July 2016; Volume 9906, p. 99065X. [Google Scholar]
- Vanderlinde, K.; Liu, A.; Gaensler, B.; Bond, D.; Hinshaw, G.; Ng, C.; Chiang, C.; Stairs, I.; Brown, J.A.; Sievers, J.; et al. The Canadian Hydrogen Observatory and Radio-transient Detector (CHORD). Can. Long Range Plan Astronony Astrophys. White Pap. 2019, 2020, 28. [Google Scholar]
- Fialkov, A.; Loeb, A. A Fast Radio Burst Occurs Every Second throughout the Observable Universe. Astrophys. J. Lett. 2017, 846, L27. [Google Scholar] [CrossRef]
Cosmological Applications of FRBs | No. of FRBs | References |
---|---|---|
Distribution of baryons between the CGM and IGM | – | Ravi [160] |
Radial density profile of the CGM | – | McQuinn [102] |
Detection of He ii reionisation | – | Kit Lau et al. [207] |
FRBs as cosmic rulers | Macquart et al. [107] | |
Origin and distribution of extragalactic magnetic fields | – | Vazza et al. [133] |
Cosmological constraints (, and w) | – | Zhao et al. [188], Walters et al. [187] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, S.; Flynn, C. Probing the Universe with Fast Radio Bursts. Universe 2021, 7, 85. https://doi.org/10.3390/universe7040085
Bhandari S, Flynn C. Probing the Universe with Fast Radio Bursts. Universe. 2021; 7(4):85. https://doi.org/10.3390/universe7040085
Chicago/Turabian StyleBhandari, Shivani, and Chris Flynn. 2021. "Probing the Universe with Fast Radio Bursts" Universe 7, no. 4: 85. https://doi.org/10.3390/universe7040085
APA StyleBhandari, S., & Flynn, C. (2021). Probing the Universe with Fast Radio Bursts. Universe, 7(4), 85. https://doi.org/10.3390/universe7040085