The Role of Small Scale Experiments in the Direct Detection of Dark Matter
Abstract
:1. Introduction
- Very low energy threshold.
- Ultra low background conditions. As for other rare event searches, operation deep underground to suppress cosmic rays and the use of passive and active shieldings against the environmental radiation from radioactivity and neutrons are mandatory [10,11]. Careful control of the material intrinsic radiopurity (in bulk or on surface) and of the cosmogenic activation of components producing long-lived radionuclides is also a must [12,13]. Appropriate materials must be selected based on different types of radioassays and purification techniques are often applied. The implementation of specific background rejection techniques, following for instance ER/NR discrimination by measuring different observables (heat, light and charge), Pulse Shape Discrimination (PSD) or volume fiducialisation if spatial information of events is available, has allowed to reduce the background levels in some experiments event down to 10 c/keV/kg/d, leaving neutrinos (from the Sun, supernovae or the atmosphere) as an irreducible background [14].
1.1. Liquid Ar and Xe Detectors
1.2. Bolometers
2. Annual Modulation Effect
3. Signal Directionality
3.1. Time Projection Chambers
3.2. Other Techniques
- Following crystal defect spectroscopy, DM-induced NRs in a target made of diamond would produce an observable damage trail in the crystal altering the strain pattern [108,109]. An ultra-fine spatial resolution at the nm-scale is expected and, being a solid-state detector, a large target mass could be accumulated.
- A DNA strand detector could be implemented [110]; DNA strands prepared onto a nm-thick gold foil would be severed by the recoil of a gold atom, kicked out by a DM particle. The identification of the location of each severing event could be determined applying biological techniques.
- In paleo-detectors, traces left in ancient minerals by the DM interaction could be searched for, taking advantage of huge integration times [113]. Different readout scenarios are being considered to achieve nm resolution and the mineral selection can be optimized to suppress some cosmogenic and radiogenic backgrounds.
- The dependence of the columnar recombination on the alignment of the NR direction with respect to a drift field provides a directional sensitivity, being investigated in the ReD (Recoil Directionality) project within the DarkSide Collaboration. This has been explored for a double-phase argon TPC [114].
4. Low-Mass DM
4.1. Semiconductor Detectors
4.2. Gas Detectors
4.3. Other Techniques
- In the HeRALD (Helium Roton Apparatus for Light Dark Matter) project, superfluid He has been proposed as DM target [142]. Sensors consisting of TES (low temperature calorimeters) allow to measure quasiparticles and photons by quantum evaporation (liberation of He atoms into a vacuum). Very low thresholds could be achieved as only 1 meV is necessary to evaporate an He atom. In addition, He offers a light nuclear mass and copious production of scintillation light.
- In the SnowBall project, supercooled water (cooled below its normal freezing point) is proposed as DM target, offering the lightest target (H) and the easy availability of water [143]. An interacting particle would trigger the water crystallization and a camera is used for the acquisition of image. Tests with neutrons using a 20 g prototype have been made operating at a temperature of −20, being insensitive to ER.
- Crystals made of laboratory-grown diamond acting as DM target could be outfitted with charge and phonon readouts to register the DM scattering (considering both NR and ER) of candidates having very low masses [144]. Carbon is lighter than other semiconductor materials and a sub-eV theshold can be expected thanks to low noise levels.
- Different small band gap materials (at 10–100 meV) from material informatics are being explored as sensors; the use of Si devices with Depleted P-channel Field Effect Transistor (DEPFET) could allow to reach sub-electron noise level to explore MeV DM particles [145]. Dirac materials with a small band gap of O(meV) could allow to explore even sub-MeV DM [146].
5. SD Interactions
6. Outlook and Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef] [Green Version]
- Group, P.D.; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Ji, X. Current status of direct dark matter detection experiments. Nat. Phys. 2017, 13, 212. [Google Scholar] [CrossRef]
- Conrad, J.; Reimer, O. Indirect dark matter searches in gamma and cosmic rays. Nat. Phys. 2017, 13, 224. [Google Scholar] [CrossRef] [Green Version]
- Buchmueller, O.; Doglioni, C.; Wang, L.T. Search for dark matter at colliders. Nat. Phys. 2017, 13, 217. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, A.L.; Haxton, W.; Katz, E.; Lubbers, N.; Xu, Y. The effective field theory of dark matter direct detection. JCAP 2013, 2013, 004. [Google Scholar] [CrossRef] [Green Version]
- Drukier, A.K.; Freese, K.; Spergel, D.N. Detecting Cold Dark Matter Candidates. Phys. Rev. 1986, D33, 3495–3508. [Google Scholar] [CrossRef]
- Lewin, J.D.; Smith, P.F. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropar. Phys. 1996, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Schumann, M. Direct Detection of WIMP Dark Matter: Concepts and Status. J. Phys. G Nucl. Part Phys. 2019, 46, 103003. [Google Scholar] [CrossRef] [Green Version]
- Heusser, G. Low-radioactivity background techniques. Ann. Rev. Nucl. Part Sci. 1995, 45, 543. [Google Scholar] [CrossRef]
- Formaggio, J.; Martoff, C. Backgrounds to sensitive experiments underground. Ann. Rev. Nucl. Part Sci. 2004, 54, 361. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S. Cosmogenic activation of materials. Int. J. Mod. Phys. A 2017, 32, 1743006. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S. Cosmogenic activation in double beta decay experiments. Universe 2020, 6, 162. [Google Scholar] [CrossRef]
- Billard, J.; Figueroa-Feliciano, E.; Strigari, L. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 2014, 89, 023524. [Google Scholar] [CrossRef] [Green Version]
- Marrodán-Undagoitia, T.; Rauch, L. Dark matter direct-detection experiments. J. Phys. G Nucl. Part Phys. 2015, 43, 013001. [Google Scholar] [CrossRef]
- Battaglieri, M.; Belloni, A.; Chou, A.; Cushman, P.; Echenard, B.; Essig, R.; Estrada, J.; Feng, J.L.; Flaugher, B.; Fox, P.J.; et al. US Cosmic Visions: New Ideas in Dark Matter 2017, Community Report. arXiv 2017, arXiv:1707.04591. [Google Scholar]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.; Alsum, S.; Araújo, H.; Bai, X.; Bailey, A.; Balajthy, J.; Beltrame, P.; Bernard, E.; Bernstein, A.; Biesiadzinski, T.; et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 021303. [Google Scholar] [CrossRef]
- Cui, X.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Dong, B.; Fang, D.; Fu, C.; Giboni, K.; Giuliani, F.; et al. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Cheng, C.; Cui, X.; Fan, Y.; Fang, D.; Fu, C.; et al. Results of Dark Matter Search using the Full PandaX-II Exposure. arXiv 2020, arXiv:2007.15469. [Google Scholar]
- Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; et al. A direct dark matter search in XMASS-I. Phys. Lett. B 2019, 789, 45. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.; Antochi, V.; Angelino, E.; Arneodo, F.; Barge, D.; et al. Light Dark Matter Search with Ionization Signals in XENON1T. Phys. Rev. Lett. 2019, 123, 251801. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Xie, P.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Cui, X.; Fan, Y.; Fang, D.; Fu, C.; et al. Search for Light Dark Matter-Electron Scatterings in the PandaX-II Experiment. arXiv 2021, arXiv:2101.07479. [Google Scholar]
- Ibe, M.; Nakano, W.; Shoji, Y.; Suzuki, K. Migdal Effect in Dark Matter Direct Detection Experiments. JHEP 2018, 3, 194. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.; Antochi, V.; Angelino, E.; Arneodo, F.; Barge, D.; et al. Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T. Phys. Rev. Lett. 2019, 123, 241803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerib, D.; Alsum, S.; Araújo, H.; Bai, X.; Balajthy, J.; Beltrame, P.; Bernard, E.; Bernstein, A.; Biesiadzinski, T.; Boulton, E.; et al. Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data. Phys. Rev. Lett. 2019, 122, 131301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.; Antochi, V.; Angelino, E.; Angevaare, J.; Arneodo, F.; et al. Observation of Excess Electronic Recoil Events in XENON1T. Phys. Rev. D 2020, 102, 072004. [Google Scholar] [CrossRef]
- Ajaj, R.; Amaudruz, P.; Araujo, G.; Baldwin, M.; Batygov, M.; Beltran, B.; Bina, C.; Bonatt, J.; Boulay, M.; Broerman, B.; et al. Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB. Phys. Rev. D 2019, 100, 022004. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Albuquerque, I.; Alexander, T.; Alton, A.; Araujo, G.; Ave, M.; Back, H.; Baldin, B.; Batignani, G.; Biery, K.; et al. DarkSide-50 532-day dark matter search with low-radioactivity argon. Phys. Rev. D 2018, 98, 102006. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Albuquerque, I.; Alexander, T.; Alton, A.; Araujo, G.; Asner, D.; Ave, M.; Back, H.; Baldin, B.; Batignani, G.; et al. Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 081307. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Albuquerque, I.; Alexander, T.; Alton, A.; Araujo, G.; Asner, D.; Ave, M.; Back, H.; Baldin, B.; Batignani, G.; et al. Constraints on Sub-GeV Dark-Matter–Electron Scattering from the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 111303. [Google Scholar] [CrossRef] [Green Version]
- Hehn, L.; Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Blümer, J.; de Boissière, T.; Broniatowski, A.; et al. Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. Eur. Phys. J. 2016, C76, 548. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Chapelier, M.; Charlieux, F.; et al. Searching for low-mass dark matter particles with a massive Ge bolometer operated above-ground. Phys. Rev. 2019, D99, 082003. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, Q.; Armengaud, E.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Chapellier, M.; et al. First Germanium-Based Constraints on Sub-MeV Dark Matter with the EDELWEISS Experiment. Phys. Rev. Lett. 2020, 125, 141301. [Google Scholar] [CrossRef]
- Agnese, R.; Aramaki, T.; Arnquist, I.; Baker, W.; Balakishiyeva, D.; Banik, S.; Barker, D.; Thakur, R.B.; Bauer, D.; Binder, D.; et al. Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. Phys. Rev. Lett. 2018, 120, 061802. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R.; Aralis, T.; Aramaki, T.; Arnquist, I.; Azadbakht, E.; Baker, W.; Banik, S.; Barker, D.; Bauer, D.; Binder, T.; et al. Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit. Phys. Rev. 2019, D99, 062001. [Google Scholar] [CrossRef] [Green Version]
- Amaral, D.; Aralis, T.; Aramaki, T.; Arnquist, I.; Azadbakht, E.; Banik, S.; Barker, D.; Bathurst, C.; Bauer, D.; Bezerra, L.; et al. Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector. Phys. Rev. D 2020, 102, 091101. [Google Scholar] [CrossRef]
- Alkhatib, I.; Amaral, D.; Aralis, T.; Aramaki, T.; Arnquist, I.; Langroudy, I.A.; Azadbakht, E.; Banik, S.; Barker, D.; Bathurst, C.; et al. Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated Above Ground. arXiv 2020, arXiv:2007.14289. [Google Scholar]
- Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F.; Iachellini, N.F.; Gorla, P.; Gütlein, A.; et al. Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys. J. C 2016, 76, 25. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Defay, X.; Lorenzo, S.D.; et al. First results from the CRESST-III low-mass dark matter program. Phys. Rev. 2019, D100, 102002. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Defay, X.; Lorenzo, S.D.; et al. First results on sub-GeV spin-dependent dark matter interactions with 7Li. Eur. Phys. J. C 2019, 79, 630. [Google Scholar] [CrossRef]
- Freese, K.; Frieman, J.; Gould, A. Signal modulation in cold-dark-matter detection. Phys. Rev. D 1988, 37, 3388. [Google Scholar] [CrossRef] [Green Version]
- Freese, K.; Lisanti, M.; Savage, C. Annual modulation of dark matter. Rev. Mod. Phys. 2013, 85, 1561. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Dai, C.; d’Angelo, A.; He, H.; Incicchitti, A.; Kuang, H.; Ma, J.; et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 2008, 56, 333–355. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.; d’Angelo, A.; Marco, A.D.; He, H.; et al. First model independent results from DAMA/LIBRA-phase2. Nucl. Phys. Atom. Energy 2018, 19, 307. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Dai, C.; d’Angelo, A.; d’Angelo, S.; Marco, A.D.; et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 2013, 73, 2648. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.; d’Angelo, A.; Marco, A.D.; Ferrari, N.; et al. The DAMA project: Achievements, implications and perspectives. Prog. Part Nucl. Phys. 2020, 114, 103810. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.; d’Angelo, A.; Marco, A.D.; He, H.; Incicchitti, A.; et al. Improved model-dependent corollary analyses after the first six annual cycles of DAMA/LIBRA-phase2. Nucl. Phys. Atom. Energy 2019, 20, 317–348. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; et al. Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data. Phys. Rev. Lett. 2017, 118, 101101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerib, D.; Alsum, S.; Araújo, H.; Bai, X.; Balajthy, J.; Beltrame, P.; Bernard, E.; Bernstein, A.; Biesiadzinski, T.; Boulton, E.; et al. Search for annual and diurnal rate modulations in the LUX experiment. Phys. Rev. 2018, D98, 062005. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Moriyama, S.; Nakahata, M.; Ogawa, H.; Sato, K.; et al. Search for sub-GeV dark matter by annual modulation using XMASS-I detector. Phys. Lett. B 2019, 795, 308–313. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Yue, Q.; Ma, H.; Kang, K.; Li, Y.; Wong, H.; Agartioglu, M.; An, H.; Chang, J.; et al. Search for Light Weakly-Interacting-Massive-Particle Dark Matter by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory. Phys. Rev. Lett. 2019, 123, 221301. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. Performance of ANAIS-112 experiment after the first year of data taking. Eur. Phys. J. C 2019, 79, 228. [Google Scholar] [CrossRef]
- Oliván, M.; Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; et al. Light yield determination in large sodium iodide detectors applied in the search for dark matter. Astropart. Phys. 2017, 93, 86. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; et al. Cosmogenic radionuclide production in NaI(Tl) crystals. JCAP 2015, 2015, 046. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; Sarsa, M.; et al. Assessment of backgrounds of the ANAIS experiment for dark matter direct detection. Eur. Phys. J. C 2016, 76, 429. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. Analysis of backgrounds for the ANAIS-112 dark matter experiment. Eur. Phys. J. C 2019, 79, 412. [Google Scholar] [CrossRef]
- Coarasa, I.; Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. ANAIS-112 sensitivity in the search for dark matter annual modulation. Eur. Phys. J. C 2019, 79, 233. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. First Results on Dark Matter Annual Modulation from the ANAIS-112 Experiment. Phys. Rev. Lett. 2019, 123, 031301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaré, J.; Cebrián, S.; Cintas, D.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. ANAIS-112 status: Two years results on annual modulation. J. Phys. Conf. Ser. 2020, 1468, 012014. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrián, S.; Cintas, D.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. Annual Modulation Results from Three Years Exposure of ANAIS-112. arXiv 2021, arXiv:2103.01175. [Google Scholar]
- Barbosa de Souza, E.; Cherwinka, J.; Cole, A.; Ezeribe, A.C.; Grant, D.; Halzen, F.; Heeger, K.M.; Hsu, L.; Hubbard, A.J.F.; Jo, J.H.; et al. First search for a dark matter annual modulation signal with NaI(Tl) in the Southern Hemisphere by DM-Ice17. Phys. Rev. D 2017, 95, 032006. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, G.; Adhikari, P.; de Souza, E.B.; Carlin, N.; Choi, S.; Choi, W.; Djamal, M.; Ezeribe, A.; Ha, C.; Hahn, I.; et al. Initial Performance of the COSINE-100 Experiment. Eur. Phys. J. C 2018, 78, 107. [Google Scholar] [CrossRef]
- Adhikari, P.; Adhikari, G.; de Souza, E.B.; Carlin, N.; Choi, S.; Choi, W.; Djamal, M.; Ezeribe, A.; Ha, C.; Hahn, I.; et al. Background model for the NaI(Tl) crystals in COSINE-100. Eur. Phys. J. C 2018, 78, 490. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, G.; Adhikari, P.; de Souza, E.B.; Carlin, N.; Choi, S.; Djamal, M.; Ezeribe, A.C.; Ha, C.H.; Hahn, I.; Hubbard, A.J.; et al. An experiment to search for dark matter interactions using sodium iodide detectors. Nature 2018, 564, 83. [Google Scholar] [CrossRef] [Green Version]
- Ha, C.; Adhikari, G.; Adhikari, P.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Djamal, M.; Ezeribe, A.C.; Hahn, I.S.; Jeon, E.J.; et al. First Direct Search for Inelastic Boosted Dark Matter with COSINE-100. Phys. Rev. Lett. 2019, 122, 131802. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, G.; Adhikari, P.; de Souza, E.B.; Carlin, N.; Choi, S.; Djamal, M.; Ezeribe, A.; Ha, C.; Hahn, I.; Jeon, E.; et al. COSINE-100 and DAMA/LIBRA-phase2 in WIMP effective models. JCAP 2019, 6, 048. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, P.; Adhikari, G.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Djamal, M.; Ezeribe, A.; Ha, C.; Hahn, I.; Jeon, E.; et al. A search for solar axion induced signals with COSINE-100. Astropart. Phys. 2020, 114, 101. [Google Scholar] [CrossRef]
- Adhikari, G.; Adhikari, P.; de Souza, E.B.; Carlin, N.; Choi, S.; Djamal, M.; Ezeribe, A.; Ha, C.; Hahn, I.; Jeon, E.; et al. Search for a Dark Matter-Induced Annual Modulation Signal in NaI(Tl) with the COSINE-100 Experiment. Phys. Rev. Lett. 2019, 123, 031302. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, G.; Adhikari, P.; de Souza, E.B.; Carlin, N.; Choi, J.; Choi, S.; Djamal, M.; Ezeribe, A.; Franca, L.; Ha, C.; et al. Background modeling for dark matter search with 1.7 years of COSINE-100 data. arXiv 2021, arXiv:2101.11377. [Google Scholar]
- Shin, K.; Choe, J.; Gileva, O.; Iltis, A.; Kim, Y.; Lee, C.; Lee, H.; Lee, M.; Park, H. A facility for mass production of ultra-pure NaI powder for the COSINE-200 experiment. JINST 2020, 15, C07031. [Google Scholar] [CrossRef]
- Park, B.; Choe, J.; Choi, J.; Gileva, O.; Ha, C.; Iltis, A.; Jeon, E.; Kim, D.; Kim, K.; Kim, S.; et al. Development of ultra-pure NaI(Tl) detectors for the COSINE-200 experiment. Eur. Phys. J. C 2020, 80, 814. [Google Scholar] [CrossRef]
- Antonello, M.; Barberio, E.; Baroncelli, T.; Benziger, J.; Bignell, L.J.; Bolognino, I.; Calaprice, F.; Copello, S.; D’Angelo, D.; D’Imperio, G.; et al. The SABRE project and the SABRE Proof-of-Principle. Eur. Phys. J. C 2019, 79, 363. [Google Scholar] [CrossRef]
- Suerfu, B.; Wada, M.; Peloso, W.; Souza, M.; Calaprice, F.; Tower, J.; Ciampi, G. Growth of Ultra-high Purity NaI(Tl) Crystal for Dark Matter Searches. Phys. Rev. Res. 2020, 2, 013223. [Google Scholar] [CrossRef] [Green Version]
- Antonello, M.; Arnquist, I.J.; Barberio, E.; Baroncelli, T.; Benziger, J.; Bignell, L.; Bolognino, I.; Calaprice, F.; Copello, S.; Dafinei, I.; et al. Characterization of SABRE crystal NaI-33 with direct underground counting. arXiv 2020, arXiv:2012.02610. [Google Scholar]
- Antonello, M.; Barberio, E.; Baroncelli, T.; Benziger, J.; Bignell, L.; Bolognino, I.; Calaprice, F.; Copello, S.; D’Angelo, D.; D’Imperio, G.; et al. Monte Carlo simulation of the SABRE PoP background. Astropart. Phys. 2019, 106, 1. [Google Scholar] [CrossRef] [Green Version]
- Fushimi, K.I. Low Background Measurement by Means of NaI(Tl) Scintillator -Improvement of Sensitivity for Cosmic Dark Matter. Radioisotopes 2018, 67, 101. [Google Scholar] [CrossRef] [Green Version]
- Fushimi, K.; Kanemitsu, Y.; Hirata, S.; Chernyak, D.; Hazama, R.; Ikeda, H.; Imagawa, K.; Ishiura, H.; Ito, H.; Kisimoto, T.; et al. Development of highly radiopure NaI(Tl) scintillator for PICOLON dark matter search project. arXiv 2021, arXiv:2101.00759. [Google Scholar]
- Kozlov, A.; Chernyak, D.; Takemoto, Y.; Fushimi, K.; Imagawa, K.; Yasuda, K.; Ejiri, H.; Hazama, R.; Ikeda, H.; Inoue, K.; et al. Detectors for direct Dark Matter search at KamLAND. Nucl. Instrum. Meth. A 2020, 958, 162239. [Google Scholar] [CrossRef]
- Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Girard, T.; Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; et al. Study of parylene-coated NaI(Tl) at low temperatures for bolometric applications. Astropart. Phys. 2013, 47, 31. [Google Scholar] [CrossRef]
- Angloher, G.; Hauff, D.; Gironi, L.; Gotti, C.; Pessina, G.; Gütlein, A.; Maino, M.; Nagorny, S.; Pagnanini, L.; Petricca, F.; et al. The COSINUS project-perspectives of a NaI scintillating calorimeter for dark matter search. Eur. Phys. J. C 2016, 76, 441. [Google Scholar] [CrossRef]
- Kahlhoefer, F.; Reindl, F.; Schäffner, K.; Schmidt-Hoberg, K.; Wild, S. Model-independent comparison of annual modulation and total rate with direct detection experiments. JCAP 2018, 5, 074. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N. The Motion of the Earth and the Detection of Wimps. Phys. Rev. 1988, D37, 1353. [Google Scholar] [CrossRef]
- Mayet, F.; Green, A.; Battat, J.; Billard, J.; Bozorgnia, N.; Gelmini, G.; Gondolo, P.; Kavanagh, B.; Lee, S.; Loomba, D.; et al. A review of the discovery reach of directional Dark Matter detection. Phys. Rep. 2016, 627, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Vahsen, S.; O’Hare, C.; Loomba, D. Directional recoil detection. arXiv 2021, arXiv:2102.04596. [Google Scholar]
- Snowden-Ifft, D.P.; Harton, J.L.; Ma, N.; Schuckman, F.G. Directional light-WIMP time-projection-chamber detector for electron beam-dump experiments. Phys. Rev. D 2019, 99, 061301. [Google Scholar] [CrossRef] [Green Version]
- Baracchini, E.; DeRocco, W.; Dho, G. Discovering supernova-produced dark matter with directional detectors. Phys. Rev. D 2020, 102, 075036. [Google Scholar] [CrossRef]
- Battat, J.; Irastorza, I.; Aleksandrov, A.; Guler, M.A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; et al. Readout technologies for directional WIMP Dark Matter detection. Phys. Rep. 2016, 662, 1. [Google Scholar] [CrossRef] [Green Version]
- Battat, J.; Ezeribe, A.; Gauvreau, J.; Harton, J.; Lafler, R.; Law, E.; Lee, E.; Loomba, D.; Lumnah, A.; Miller, E.; et al. Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector. Astropart. Phys. 2017, 91, 65. [Google Scholar] [CrossRef] [Green Version]
- Riffard, Q.; Santos, D.; Guillaudin, O.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Fourel, C.; Muraz, J.F.; Lebreton, L.; et al. First detection of radon progeny recoil tracks by MIMAC. JINST 2017, 12, P06021. [Google Scholar] [CrossRef]
- Tao, Y.; Beaufort, C.; Moric, I.; Tao, C.; Santos, D.; Sauzet, N.; Couturier, C.; Guillaudin, O.; Muraz, J.; Naraghi, F.; et al. Track length measurement of 19F+ ions with the MIMAC directional Dark Matter detector prototype. Nucl. Instrum. Meth. A 2021, 985, 164569. [Google Scholar] [CrossRef]
- Nakamura, K.; Miuchi, K.; Tanimori, T.; Kubo, H.; Takada, A.; Parker, J.; Mizumoto, T.; Mizumura, Y.; Nishimura, H.; Sekiya, H.; et al. Direction-sensitive dark matter search with gaseous tracking detector NEWAGE-0.3b’. Prog. Theor. Exp. Phys. 2015, 2015, 43F01. [Google Scholar] [CrossRef] [Green Version]
- Yakabe, R.; Nakamura, K.; Ikeda, T.; Ito, H.; Yamaguchi, Y.; Taishaku, R.; Nakazawa, M.; Ishiura, H.; Nakamura, T.; Shimada, T.; et al. First limits from a 3d-vector directional dark matter search with the NEWAGE-0.3b’ detector. arXiv 2020, arXiv:2005.05157. [Google Scholar]
- Deaconu, C.; Leyton, M.; Corliss, R.; Druitt, G.; Eggleston, R.; Guerrero, N.; Henderson, S.; Lopez, J.; Monroe, J.; Fisher, P. Measurement of the directional sensitivity of DMTPC detectors. Phys. Rev. D 2017, 95, 122002. [Google Scholar] [CrossRef] [Green Version]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. CYGNO: A gaseous TPC with optical readout for dark matter directional search. J. Instrum. 2020, 15, C07036. [Google Scholar] [CrossRef]
- Costa, I.A.; Baracchini, E.; Bellini, F.; Benussi, L.; Bianco, S.; Caponero, M.; Cavoto, G.; D’Imperio, G.; Marco, E.D.; Maccarrone, G.; et al. Performance of optically readout GEM-based TPC with a 55Fe source. J. Instrum. 2019, 14, P07011. [Google Scholar] [CrossRef] [Green Version]
- Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Asada, T.; Ashikhmin, V.; Bodnarchuk, I.; Buonaura, A.; Chernyavskii, M.; Chukanov, A.; D’Ambrosio, N.; et al. Discovery potential for directional Dark Matter detection with nuclear emulsions. Eur. Phys. J. C 2018, 78, 578. [Google Scholar] [CrossRef]
- Battat, J.; Daw, E.; Ezeribe, A.; Gauvreau, J.L.; Harton, J.L.; Lafler, R.; Lee, E.R.; Loomba, D.; Lumnah, A.; Miller, E.; et al. First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector. J. Instrum. 2016, 11, P10019. [Google Scholar] [CrossRef] [Green Version]
- Battat, J.; Eldridge, C.; Ezeribe, A.; Gaunt, O.; Gauvreau, J.L.; Gregorio, R.M.; Habich, E.; Hall, K.; Harton, J.; Ingabire, I.; et al. Improved Sensitivity of the DRIFT-IId Directional Dark Matter Experiment using Machine Learning. arXiv 2021, arXiv:2103.06702. [Google Scholar]
- Tao, Y.; Beaufort, C.; Moric, I.; Tao, C.; Santos, D.; Sauzet, N.; Couturier, C.; Guillaudin, O.; Muraz, J.; Naraghi, F.; et al. Dark Matter Directionality Detection performance of the Micromegas-based μTPC-MIMAC detector. arXiv 2020, arXiv:2003.11812. [Google Scholar]
- Ikeda, T.; Nakamura, K.; Shimada, T.; Yakabe, R.; Hashimoto, T.; Ishiura, H.; Nakamura, T.; Ito, H.; Ichimura, K.; Abe, K.; et al. Direction-sensitive dark matter search with a low-background gaseous detector NEWAGE-0.3b. arXiv 2021, arXiv:2101.09921. [Google Scholar]
- Hashimoto, T.; Miuchi, K.; Ikeda, T.; Ishiura, H.; Nakamura, K.D.; Ito, H.; Ichimura, K.; Abe, K.; Kobayashi, K.; Takada, A.; et al. Development of a low-α-emitting μ-PIC as a readout device for direction-sensitive dark matter detectors. Nucl. Instrum. Meth. A 2020, 977, 164285. [Google Scholar] [CrossRef]
- Ikeda, T.; Shimada, T.; Ishiura, H.; Nakamura, K.; Nakamura, T.; Miuchi, K. Development of a Negative Ion Micro TPC Detector with SF6 Gas for the Directional Dark Matter Search. JINST 2020, 15, P07015. [Google Scholar] [CrossRef]
- Vahsen, S.; O’Hare, C.; Lynch, W.; Spooner, N.; Baracchini, E.; Barbeau, P.; Battat, J.; Crow, B.; Deaconu, C.; Eldridge, C.; et al. CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos. arXiv 2020, arXiv:2008.12587. [Google Scholar]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. Stability and detection performance of a GEM-based Optical Readout TPC with He/CF4 gas mixtures. JINST 2020, 15, P10001. [Google Scholar] [CrossRef]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.A.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. Identification of low energy nuclear recoils in a gas TPC with optical readout. Meas. Sci. Tech. 2021, 32, 025902. [Google Scholar] [CrossRef]
- Alexandrov, A.; Lellis, G.D.; Crescenzo, A.D.; Golovatiuk, A.; Tioukov, V. Directionality preservation of nuclear recoils in an emulsion detector for directional dark matter search. arXiv 2021, arXiv:2102.03125. [Google Scholar]
- Rajendran, S.; Zobrist, N.; Sushkov, A.O.; Walsworth, R.; Lukin, M. A method for directional detection of dark matter using spectroscopy of crystal defects. Phys. Rev. D 2017, 96, 035009. [Google Scholar] [CrossRef] [Green Version]
- Marshall, M.C.; Turner, M.J.; Ku, M.J.; Phillips, D.F.; Walsworth, R.L. Directional detection of dark matter with diamond. arXiv 2020, arXiv:2009.01028. [Google Scholar]
- Drukier, A.K.; Cantor, C.; Chonofsky, M.; Church, G.; Fagaly, R.; Freese, K.; Lopez, A.; Sano, T.; Savage, C.; Wong, W.P. New class of biological detectors for WIMPs. Int. J. Mod. Phys. A 2014, 29, 1443007. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y. Graphene-based detectors for directional dark matter detection. Eur. Phys. J. C 2019, 79, 561. [Google Scholar] [CrossRef] [Green Version]
- Baracchini, E.; Betti, M.; Biasotti, M.; Bosca, A.; Calle, F.; Carabe-Lopez, J.; Cavoto, G.; Chang, C.; Cocco, A. PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter. arXiv 2018, arXiv:1808.01892. [Google Scholar]
- Drukier, A.K.; Baum, S.; Freese, K.; Górski, M.; Stengel, P. Paleo-detectors: Searching for dark matter with ancient minerals. Phys. Rev. D 2019, 99, 043014. [Google Scholar] [CrossRef] [Green Version]
- Cadeddu, M.; Lissia, M.; Agnes, P.; Batignani, G.; Bonivento, W.; Bottino, B.; Caravati, M.; Catalanotti, S.; Cataudella, V.; Cicalò, C.; et al. Directional dark matter detection sensitivity of a two-phase liquid argon detector. JCAP 2019, 1, 014. [Google Scholar] [CrossRef] [Green Version]
- Cavoto, G.; Cirillo, E.; Cocina, F.; Ferretti, J.; Polosa, A. WIMP detection and slow ion dynamics in carbon nanotube arrays. Eur. Phys. J. C 2016, 76, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, S.; Knapen, S.; Lin, T.; Zurek, K.M. Directional detection of light dark matter with polar materials. Phys. Rev. D 2018, 98, 115034. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yue, Q.; Yang, L.; Kang, K.; Li, Y.; Wong, H.; Agartioglu, M.; An, H.; Chang, J.; Chen, J.; et al. Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jinping Underground Laboratory. Phys. Rev. Lett. 2019, 123, 161301. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Jia, L.; Yue, Q.; Kang, K.; Cheng, J.; Li, Y.; Wong, H.; Agartioglu, M.; An, H.; Chang, J.; et al. Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg × day Data of the CDEX-10 Experiment. Phys. Rev. Lett. 2018, 120, 241301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Arevalo, A.; Amidei, D.; Baxter, D.; Cancelo, G.; Vergara, B.C.; Chavarria, A.; D’Olivo, J.; Estrada, J.; Favela-Perez, F.; Gaior, R.; et al. Results on Low-Mass Weakly Interacting Massive Particles from an 11 kg d Target Exposure of DAMIC at SNOLAB. Phys. Rev. Lett. 2020, 125, 241803. [Google Scholar] [CrossRef]
- Castello-Mor, N. DAMIC-M experiment: Thick, silicon CCDs to search for light dark matter. Nucl. Instrum. Meth. A 2019, 958, 162933. [Google Scholar] [CrossRef] [Green Version]
- Abramoff, O.; Barak, L.; Bloch, I.M.; Chaplinsky, L.; Crisler, M.; Dawa; Drlica-Wagner, A.; Essig, R.; Estrada, J.; Etzion, E.; et al. SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype Skipper-CCD. Phys. Rev. Lett. 2019, 122, 161801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barak, L.; Bloch, I.M.; Cababie, M.; Cancelo, G.; Chaplinsky, L.; Chierchie, F.; Crisler, M.; Drlica-Wagner, A.; Essig, R.; Estrada, J.; et al. SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD. Phys. Rev. Lett. 2020, 125, 171802. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, Q.; Asner, D.; Bard, J.; Brossard, A.; Cai, B.; Chapellier, M.; Clark, M.; Corcoran, E.; Dandl, T.; Dastgheibi-Fard, A.; et al. First results from the NEWS-G direct dark matter search experiment at the LSM. Astropart. Phys. 2018, 97, 54. [Google Scholar] [CrossRef] [Green Version]
- Giroux, G.; Gros, P.; Katsioulas, I. The search for light dark matter with the NEWS-G spherical proportional counter. J. Phys. Conf. Ser. 2019, 1312, 012008. [Google Scholar] [CrossRef]
- Iguaz, F.; Garza, J.; Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; García, J.; Irastorza, I.; Lagraba, A.; Luzón, G.; et al. TREX-DM: A low-background Micromegas-based TPC for low-mass WIMP detection. Eur. Phys. J. 2016, C76, 529. [Google Scholar] [CrossRef] [Green Version]
- Castel, J.; Cebrian, S.; Coarasa, I.; Dafni, T.; Galan, J.; Iguaz, F.; Irastorza, I.; Luzon, G.; Mirallas, H.; de Solorzano, A.O.; et al. Background assessment for the TREX dark matter experiment. Eur. Phys. J. C 2019, 79, 782. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Barbeau, P.; Colaresi, J.; Collar, J.; Leon, J.D.; Fast, J.; Fields, N.; Hossbach, T.W.; Knecht, A.; Kos, M.; et al. CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors. Phys. Rev. D 2013, 88, 012002. [Google Scholar] [CrossRef] [Green Version]
- She, Z.; Jia, L.P.; Yue, Q.; Ma, H.; Kang, K.J.; Li, Y.J.; Agartioglu, M.; An, H.P.; Chang, J.P.; Chen, J.H.; et al. Direct Detection Constraints on Dark Photons with the CDEX-10 Experiment at the China Jinping Underground Laboratory. Phys. Rev. Lett. 2020, 124, 111301. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zeng, Z.; Yue, Q.; Yang, L.; Kang, K.; Li, Y.; Agartioglu, M.; An, H.; Chang, J.; Chen, J.; et al. First Experimental Constraints on WIMP Couplings in Effective Field Theory Framework from the CDEX Experiment. arXiv 2020, arXiv:2007.15555. [Google Scholar]
- Singh, M.K.; Singh, L.; Agartioglu, M.; Sharma, V.; Singh, V.; Wong, H.T. Constraints on bosonic dark matter with low threshold germanium detector at Kuo-Sheng reactor neutrino laboratory. Chin. J. Phys. 2019, 58, 63. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.; Amidei, D.; Baxter, D.; Cancelo, G.; Vergara, B.C.; Chavarria, A.; Darragh-Ford, E.; D’Olivo, J.; Estrada, J.; Favela-Perez, F.; et al. Measurement of the bulk radioactive contamination of detector-grade silicon with DAMIC at SNOLAB. arXiv 2011, arXiv:2011.12922. [Google Scholar]
- Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Butner, M.; Cancelo, G.; Vázquez, A.C.; Vergara, B.C.; Chavarria, A.; Chavez, C.; de Mello Neto, J.; et al. First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB. Phys. Rev. Lett. 2017, 118, 141803. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.; Amidei, D.; Baxter, D.; Cancelo, G.; Cervantes Vergara, B.A.; Chavarria, A.E.; Darragh-Ford, E.; de Mello Neto, J.R.T.; D’Olivo, J.C.; Estrada, J.; et al. Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB. Phys. Rev. Lett. 2019, 123, 181802. [Google Scholar] [CrossRef] [Green Version]
- Saldanha, R.; Thomas, R.; Tsang, R.H.M.; Chavarria, A.E.; Bunker, R.; Burnett, J.L.; Elliott, S.R.; Matalon, A.; Mitra, P.; Piers, A.; et al. Cosmogenic activation of silicon. Phys. Rev. D 2020, 102, 102006. [Google Scholar] [CrossRef]
- Giomataris, I.; Irastorza, I.; Savvidis, I.; Andriamonje, S.; Aune, S.; Chapelier, M.; Charvin, P.; Colas, P.; Derre, J.; Ferrer, E.; et al. A Novel large-volume Spherical Detector with Proportional Amplification read-out. JINST 2008, 3, P09007. [Google Scholar] [CrossRef] [Green Version]
- Balogh, L.; Beaufort, C.; Brossard, A.; Bunker, R.; Caron, J.F.; Chapellier, M.; Coquillat, J.M.; Corcoran, E.; Crawford, S.; Dastgheibi Fard, A.; et al. Copper electroplating for background suppression in the NEWS-G experiment. Nucl. Instrum. Meth. A 2021, 988, 164844. [Google Scholar] [CrossRef]
- Arnaud, Q.; Bard, J.; Brossard, A.; Chapellier, M.; Clark, M.; Crawford, S.; Corcoran, E.; Dastgheibi-Fard, A.; Dering, K.; Stefano, P.D.; et al. Precision laser-based measurements of the single electron response of SPCs for the NEWS-G light dark matter search experiment. Phys. Rev. D 2019, 99, 102003. [Google Scholar] [CrossRef] [Green Version]
- Katsioulas, I.; Giomataris, I.; Knights, P.; Gros, M.; Navick, X.F.; Nikolopoulos, K.; Savvidis, I. A sparkless resistive glass correction electrode for the spherical proportional counter. JINST 2018, 13, P11006. [Google Scholar] [CrossRef] [Green Version]
- Giomataris, I.; Gros, M.; Katsioulas, I.; Knights, P.; Mols, J.; Neep, T.; Nikolopoulos, K.; Savvidis, G.; Savvidis, I.; Shang, L.; et al. A resistive ACHINOS multi-anode structure with DLC coating for spherical proportional counters. JINST 2020, 15, 11. [Google Scholar] [CrossRef]
- Katsioulas, I.; Knights, P.; Matthews, J.; Neep, T.; Nikolopoulos, K.; Owen, R.; Ward, R. Development of a simulation framework for spherical proportional counters. JINST 2020, 15, C06013. [Google Scholar] [CrossRef]
- Irastorza, I.G.; Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; Galán, J.; García, J.A.; Garza, J.G.; Gómez, H.; Herrera, D.; et al. Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter. arXiv 2016, arXiv:1512.06294. [Google Scholar]
- Hertel, S.A.; Biekert, A.; Lin, J.; Velan, V.; McKinsey, D.N. Direct detection of sub-GeV dark matter using a superfluid 4He target. Phys. Rev. D 2019, 100, 092007. [Google Scholar] [CrossRef] [Green Version]
- Szydagis, M.; Huang, Y.; Kamaha, A.C.; Knight, C.C.; Levy, C.; Rischbieter, G.R. Evidence for the Freezing of Supercooled Water by Means of Neutron Irradiation. arXiv 2018, arXiv:1807.09253. [Google Scholar]
- Kurinsky, N.; Yu, T.C.; Hochberg, Y.; Cabrera, B. Diamond detectors for direct detection of sub-GeV dark matter. Phys. Rev. D 2019, 99, 123005. [Google Scholar] [CrossRef] [Green Version]
- Bähr, A.; Kluck, H.; Ninkovic, J.; Schieck, J.; Treis, J. DEPFET detectors for direct detection of MeV Dark Matter particles. Eur. Phys. J. C 2017, 77, 905. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, Y.; Kahn, Y.; Lisanti, M.; Zurek, K.M.; Grushin, A.G.; Ilan, R.; Griffin, S.M.; Liu, Z.F.; Weber, S.F.; Neaton, J.B. Detection of sub-MeV dark matter with three-dimensional Dirac materials. Phys. Rev. D 2018, 97, 015004. [Google Scholar] [CrossRef] [Green Version]
- Amole, C.; Ardid, M.; Arnquist, I.J.; Asner, D.M.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Cao, G.; Chen, C.; et al. Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber. Phys. Rev. D 2019, 100, 022001. [Google Scholar] [CrossRef] [Green Version]
- Bressler, M.; Campion, P.; Cushman, V.S.; Morrese, A.; Wagner, J.M.; Zerbo, S.; Neilson, R.; Crisler, M.; Dahl, C.E. A buffer-free concept bubble chamber for PICO dark matter searches. JINST 2019, 15, P08019. [Google Scholar] [CrossRef] [Green Version]
- Baxter, D. First demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering. Phys. Rev. Lett. 2017, 118, 231301. [Google Scholar] [CrossRef] [Green Version]
Experiment | Laboratory | Technology | Target | Size | Status | Reference |
---|---|---|---|---|---|---|
DAMA/LIBRA | LNGS | Scintillator | NaI(Tl) | ∼250 kg | Running | [45,47] |
ANAIS-112 | LSC | Scintillator | NaI(Tl) | 112.5 kg | Running | [59,60] |
COSINE-100 | Yangyang | Scintillator | NaI(Tl) | 106 kg | Running | [69] |
SABRE | LNGS,Stawell | Scintillator | NaI(Tl) | ∼50 kg | In preparation | [73] |
PICOLON | Kamioka | Scintillator | NaI(Tl) | 23.4 kg | In preparation | [77] |
COSINUS | LNGS | Bolometer | NaI, NaI(Tl) | ∼1 kg | In preparation | [81] |
Experiment | Laboratory | Technology | Target | Size | Status | Reference |
---|---|---|---|---|---|---|
DRIFT | Boulky | TPC+MWPC | CS + CF + O | 0.14 kg, 1 m | Finished | [89] |
MIMAC | LSM | TPC+Micromegas | CHF + CF + CH | 1 m | In preparation | [90,91] |
NEWAGE | Kamioka | TPC+PIC | CF, SF | 0.01 kg | Running | [92,93] |
DMTPC | WIPP | TPC+opt. read. | CF | 1 m | In preparation | [94] |
CYGNO | LNGS | TPC+GEM,CMOS,PMT | He/CF | 1 m | In preparation | [95,96] |
NEWS-dm | LNGS | Nuc. emulsion+opt. read | Silver halide | 10 g | In preparation | [97] |
Experiment | Laboratory | Technology | Target | Size | Status | Reference |
---|---|---|---|---|---|---|
CDEX-10 | Jinping | Point-Contact Ge | Ge | ∼10 kg | Running | [117,118] |
DAMIC | SNOLAB | CCD | Si | ∼40 g | Running | [119] |
DAMIC-M | LSM | Skipper CCD | Si | ∼700 g | In preparation | [120] |
SENSEI | SNOLAB | Skipper CCD | Si | 100 g | In preparation | [121,122] |
SEDINE | LSM | Spherical Proportional Counter | Ne-CH | ∼300 g | Finished | [123] |
NEWS-G | SNOLAB | Spherical Proportional Counter | H, He, Ne | ∼1.4 m | In preparation | [124] |
TREX-DM | LSC | TPC+Micromegas | Ar/Ne | 300/160 g | In preparation | [125,126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebrián, S. The Role of Small Scale Experiments in the Direct Detection of Dark Matter. Universe 2021, 7, 81. https://doi.org/10.3390/universe7040081
Cebrián S. The Role of Small Scale Experiments in the Direct Detection of Dark Matter. Universe. 2021; 7(4):81. https://doi.org/10.3390/universe7040081
Chicago/Turabian StyleCebrián, Susana. 2021. "The Role of Small Scale Experiments in the Direct Detection of Dark Matter" Universe 7, no. 4: 81. https://doi.org/10.3390/universe7040081
APA StyleCebrián, S. (2021). The Role of Small Scale Experiments in the Direct Detection of Dark Matter. Universe, 7(4), 81. https://doi.org/10.3390/universe7040081