Positronia’ Clouds in Universe
Abstract
1. Introduction
2. Sources of Positrons and Positronia
3. Ultraperipheral Nuclear Collisions at NICA Collider
4. From Colliders to Astrophysics
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegert, T.; Diehl, R.; Khachatryan, G.; Krause, M.G.; Guglielmetti, F.; Greiner, J.; Strong, A.W.; Zhang, X. Gamma-ray spectroscopy of Positron Annihilation in the Milky Way. A&A 2016, 586, A84. [Google Scholar]
- Dwyer, J.R.; Smith, D.M.; Hazelton, B.J.; Grefenstette, B.W.; Kelley, N.A.; Lowell, A.W.; Schaal, M.M.; Rassoul, H.K. Positron clouds within thunderstorms. J. Plasma Phys. 2015, 81, 475810405. [Google Scholar] [CrossRef][Green Version]
- Klein, S. Two-photon production of dilepton pairs in peripheral heavy ion collisions. Phys. Rev. C 2018, 97, 054903. [Google Scholar] [CrossRef]
- Chubenko, A.P.; Antonova, V.P.; Kryukov, S.Y.; Piskal, V.V.; Ptitsyn, M.O.; Shepetov, A.L.; Vildanova, L.I.; Zybin, K.P.; Gurevich, A.V. Intense X-ray emission bursts during thunderstorms. Phys. Lett. A 2000, 275, 90–100. [Google Scholar] [CrossRef]
- Chubenko, A.P.; Karashtin, A.N.; Ryabov, V.A.; Shepetov, A.L.; Antonova, V.P.; Kryukov, S.V.; Mitko, G.G.; Naumov, A.S.; Pavljuchenko, L.V.; Ptitsyn, M.O.; et al. Energy spectrum of lightning gamma emission. Phys. Lett. A 2009, 373, 2953–2958. [Google Scholar] [CrossRef]
- Chilingarian, A.; Mailyan, B.; Vanyan, L. Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds. Atmos. Res. 2012, 114–115, 1–16. [Google Scholar] [CrossRef]
- Dremin, I.M. Excess of soft dielectrons and photons. Universe 2020, 6, 94. [Google Scholar] [CrossRef]
- Dremin, I.M.; Gevorkyan, S.R.; Madigozhin, D.T. Enhancement of low-mass dileptons in ultraperipheral collisions. arXiv 2020, arXiv:2008.13184. [Google Scholar]
- Diehl, R.; Krause, M.G.; Kretschmer, K.; Lang, M. Steady-state nucleosynthesis throughout the Galaxy. arXiv 2020, arXiv:2011.06369. [Google Scholar]
- Takhistov, V. Positrons from Primordial Black Hole Microquasars and Gamma-ray Bursts. Phys. Lett. B 2019, 789, 538–544. [Google Scholar] [CrossRef]
- Istomin, Y.N.; Chernyshov, D.O.; Sob’yanin, D.N. Extinct radio pulsars as a source of subrelativistic positrons. Mon. Not. R. Astron. Soc. 2020, 498, 2089–2094. [Google Scholar] [CrossRef]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A. Annihilation Emission from the Galactic Black Hole. Astrophys. J. 2006, 645, 1138. [Google Scholar] [CrossRef][Green Version]
- Cai, R.; Ding, Y.; Yang, X.; Zhou, Y. Constraints on a mixed model of dark matter particles and primordial black holes from the Galactic 511 keV line. arXiv 2020, arXiv:2007.11804. [Google Scholar]
- Farzan, Y.; Rajaee, M. Pico-charged particles explaining 511 keV line and XENON1T signal. arXiv 2020, arXiv:2007.14421. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. On the production of electrons and positrons by a collision of two particles. Phys. Z. Sowjetunion 1934, 6, 244. [Google Scholar]
- Froissart, M. Asymptotic Behavior and Subtractions in the Mandelstam Representation. Phys. Rev. 1961, 123, 1053–1057. [Google Scholar] [CrossRef]
- Dremin, I.M. Ultraperipheral vs ordinary nuclear interactions. Universe 2020, 6, 4. [Google Scholar] [CrossRef]
- Budnev, V.M.; Ginzburg, I.F.; Meledin, G.V.; Serbo, V.G. The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rep. C 1975, 15, 181–282. [Google Scholar] [CrossRef]
- Dremin, I.M. Ultraperipheral nuclear interactions. Phys. Usp. 2020, 63, 758–765. [Google Scholar] [CrossRef]
- Vysotsky, M.I.; Zhemchugov, E.V. Equivalent photons in proton-proton and ion-ion collisions at the Large Hadron Collider. Phys. Usp. 2019, 189, 975–984. [Google Scholar] [CrossRef]
- Dremin, I.M. Thresholds of ultraperipheral processes. Int. J. Mod. Phys. A 2020, 35, 2050087. [Google Scholar] [CrossRef]
- Weizsäcker, C.F.V. Radiation emitted in collisions of very fast electrons. Z. Phys. 1934, 88, 612–625. [Google Scholar] [CrossRef]
- Williams, E.J. Nature of the high energy particles of penetrating radiation and status of ionization and radiation formulae. Phys. Rev. 1934, 45, 729–730. [Google Scholar] [CrossRef]
- Racah, G. Sulla Nascita di Coppie per Urti di Particelle Elettrizzate. Phys. Usp. 2020, 190, 811. [Google Scholar]
- Berestetsky, V.B.; Lifshitz, E.M.; Pitaevsky, L.P. Kvantovaya Electrodinamika; Fizmatlit: Moscow, Russia, 2001. [Google Scholar]
- Breit, G.; Wheeler, J.A. Collision of Two Light Quanta. Phys. Rev. 1934, 46, 1087–1091. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Kvantovaya Mechanika, Nerelyativistskaya Teoriya. In Quantum Mechanics; Pergamon Press: Oxford, UK, 1977. [Google Scholar]
- Sommerfeld, A. Atombau und Spectrallinien; F. Vieweg und Sohn: Brunswick, Germany, 1921. [Google Scholar]
- Gamow, G. Zur Quantentheorie des Atomkernes. Z. Phys. 1928, 51, 204–212. [Google Scholar] [CrossRef]
- Sommerfeld, A. Über die Beugung und Bremsung der Elektronen. Ann. Phys. (Leipz.) 1931, 403, 257–330. [Google Scholar] [CrossRef]
- Sakharov, A.D. Interaction of the electron and the positron in pair production. Zh. Eksp. Teor. Fiz. 1948, 18, 631–635. [Google Scholar]
- Baier, V.N.; Fadin, V.S. Coulomb interaction in the final state. Sov. Phys. JETP 1970, 30, 127. [Google Scholar]
- Iengo, R. Sommerfeld enhancement: General results from field theory diagrams. J. High Energy Phys. 2009, 5, 024. [Google Scholar] [CrossRef]
- Cassel, S. Sommerfeld factor for arbitrary partial wave processes. J. Phys. G 2010, 37, 105009. [Google Scholar] [CrossRef]
- Arbuzov, A.B.; Kopylova, T.V. On relativization of the Sommerfeld-Gamow-Sakharov factor. J. High Energy Phys. 2012, 4, 009. [Google Scholar] [CrossRef]
- Dremin, I.M. Geometry of ultraperipheral nuclear collisions. Int. J. Mod. Phys. A 2019, 34, 1950068. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dremin, I.M. Positronia’ Clouds in Universe. Universe 2021, 7, 42. https://doi.org/10.3390/universe7020042
Dremin IM. Positronia’ Clouds in Universe. Universe. 2021; 7(2):42. https://doi.org/10.3390/universe7020042
Chicago/Turabian StyleDremin, Igor M. 2021. "Positronia’ Clouds in Universe" Universe 7, no. 2: 42. https://doi.org/10.3390/universe7020042
APA StyleDremin, I. M. (2021). Positronia’ Clouds in Universe. Universe, 7(2), 42. https://doi.org/10.3390/universe7020042