# Gravity Models with Nonlinear Symmetry Realization

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Cosmological Behavior

## 3. Field Content

## 4. Discussion and Summary

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

GR | General relativity |

## Appendix A

## References

- Ogievetsky, V.I. Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups. Lett. Nuovo Cim.
**1973**, 8, 988–990. [Google Scholar] [CrossRef] - Borisov, A.B.; Ogievetsky, V.I. Theory of Dynamical Affine and Conformal Symmetries as Gravity Theory. Theor. Math. Phys.
**1975**, 21, 1179. [Google Scholar] [CrossRef] - Salam, A.; Strathdee, J.A. Nonlinear realizations. 1: The Role of Goldstone bosons. Phys. Rev.
**1969**, 184, 1750–1759. [Google Scholar] [CrossRef] - Salam, A.; Strathdee, J.A. Nonlinear realizations. 2. Conformal symmetry. Phys. Rev.
**1969**, 184, 1760–1768. [Google Scholar] [CrossRef] - Isham, C.J.; Salam, A.; Strathdee, J.A. Spontaneous breakdown of conformal symmetry. Phys. Lett.
**1970**, 31B, 300–302. [Google Scholar] [CrossRef] - Isham, C.J.; Salam, A.; Strathdee, J.A. Nonlinear realizations of space-time symmetries. Scalar and tensor gravity. Ann. Phys.
**1971**, 62, 98–119. [Google Scholar] [CrossRef] - Bellucci, S.; Ivanov, E.; Krivonos, S. AdS/CFT equivalence transformation. Phys. Rev. D
**2002**, 66, 086001. [Google Scholar] [CrossRef] [Green Version] - Mannheim, P.D. Making the Case for Conformal Gravity. Found. Phys.
**2012**, 42, 388–420. [Google Scholar] [CrossRef] [Green Version] - ’t Hooft, G. A class of elementary particle models without any adjustable real parameters. Found. Phys.
**2011**, 41, 1829–1856. [Google Scholar] [CrossRef] [Green Version] - Riegert, R.J. The particle content of linearized conformal gravity. Phys. Lett. A
**1984**, 105, 110–112. [Google Scholar] [CrossRef] - Barabash, O.V.; Shtanov, Y.V. Newtonian limit of conformal gravity. Phys. Rev. D
**1999**, 60, 064008. [Google Scholar] [CrossRef] [Green Version] - Phillips, P.R. Schwarzschild and linear potentials in Mannheim’s model of conformal gravity. Mon. Not. R. Astron. Soc.
**2018**, 478, 2827–2834. [Google Scholar] [CrossRef] [Green Version] - Caprini, C.; Hölscher, P.; Schwarz, D.J. Astrophysical Gravitational Waves in Conformal Gravity. Phys. Rev. D
**2018**, 98, 084002. [Google Scholar] [CrossRef] [Green Version] - Wetterich, C. Conformal fixed point, cosmological constant and quintessence. Phys. Rev. Lett.
**2003**, 90, 231302. [Google Scholar] [CrossRef] [PubMed] - Polyakov, A.M. Conformal fixed points of unidentified gauge theories. Mod. Phys. Lett. A
**2004**, 19, 1649–1660. [Google Scholar] [CrossRef] [Green Version] - Reuter, M.; Weyer, H. Conformal sector of Quantum Einstein Gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance. Phys. Rev. D
**2009**, 80, 025001. [Google Scholar] [CrossRef] [Green Version] - Arbuzov, A.B.; Latosh, B.N. Gravity and Nonlinear Symmetry Realization. Universe
**2020**, 6, 12. [Google Scholar] [CrossRef] [Green Version] - Ivanov, E.A. Gauge Fields, Nonlinear Realizations, Supersymmetry. Phys. Part. Nucl.
**2016**, 47, 508–539. [Google Scholar] [CrossRef] [Green Version] - Ivanov, E.A.; Krivonos, S.O. Nonlinear realization of the conformal group in two dimensions and the Liouville equation. Theor. Math. Phys.
**1984**, 58, 131–140. [Google Scholar] [CrossRef] - Creminelli, P.; Serone, M.; Trincherini, E. Non-linear Representations of the Conformal Group and Mapping of Galileons. JHEP
**2013**, 10, 040. [Google Scholar] [CrossRef] [Green Version] - Alexeyev, S.; Krichevskiy, D. Inflationary solutions in the simplest gravity model with conformal symmetry. Phys. Part. Nucl. Lett.
**2021**, 18, 128–130. [Google Scholar] [CrossRef] - Weinberg, S. Cosmology; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Rubakov, V.A.; Gorbunov, D.S. Introduction to the Theory of the Early Universe; World Scientific: Singapore, 2017. [Google Scholar]
- Ivanov, E.A.; Ogievetsky, V.I. The Inverse Higgs Phenomenon in Nonlinear Realizations. Teor. Mat. Fiz.
**1975**, 25, 164–177. [Google Scholar] [CrossRef] - Arbuzov, A.; Latosh, B. On anomalies in effective models with nonlinear symmetry realization. Mod. Phys. Lett. A
**2020**, 35, 2050294. [Google Scholar] [CrossRef] - Wigner, E.P. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. Math.
**1939**, 40, 149–204. [Google Scholar] [CrossRef] - Bilal, A. Introduction to supersymmetry. arXiv
**2001**, arXiv:hep-th/0101055. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alexeyev, S.; Krichevskiy, D.; Latosh, B.
Gravity Models with Nonlinear Symmetry Realization. *Universe* **2021**, *7*, 501.
https://doi.org/10.3390/universe7120501

**AMA Style**

Alexeyev S, Krichevskiy D, Latosh B.
Gravity Models with Nonlinear Symmetry Realization. *Universe*. 2021; 7(12):501.
https://doi.org/10.3390/universe7120501

**Chicago/Turabian Style**

Alexeyev, Stanislav, Daniil Krichevskiy, and Boris Latosh.
2021. "Gravity Models with Nonlinear Symmetry Realization" *Universe* 7, no. 12: 501.
https://doi.org/10.3390/universe7120501