The Missing Lead: Developments in the Lead (Pb) Discrepancy in Intrinsically s-Process Enriched Single Post-AGB Stars
Abstract
:1. Introduction
2. Detecting Pb in the Photospheres of Post-AGB Stars
3. Lead Abundances of s-Process Enriched Post-AGB Single Stars in the Galaxy and the Magellanic Clouds
4. Current Theoretical Status
The Advent of the i-Process
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Object | Name | [Pb/hs] | [Pb/ls] | T(K) | L/ | ||
---|---|---|---|---|---|---|---|
Galaxy | |||||||
1 | IRAS 05113+1347 | −0.49 ± 0.15 | 1.54 ± 0.07 | <−0.21 | <0.11 | 5500 | |
2 | IRAS 05341+0852 | −0.54 ± 0.11 | 2.12 ± 0.05 | <−0.14 | <0.23 | 6750 | |
3 | IRAS 06530-0213 | −0.32 ± 0.11 | 1.94 ± 0.06 | <0.69 | <0.98 | 7375 | |
4 | IRAS 07134+1005 | −0.91 ± 0.20 | 1.63 ± 0.14 | <0.38 | <0.37 | 7250 | |
5 | IRAS 07430+1115 | −0.31 ± 0.15 | 1.47 ± 0.06 | <−0.48 | <−0.23 | 6000 | |
6 | IRAS 08143-4406 | −0.43 ± 0.11 | 1.65 ± 0.05 | <0.32 | <0.13 | 7000 | |
7 | IRAS 08281-4850 | −0.26 ± 0.11 | 1.58 ± 0.09 | <1.13 | <1.14 | 7875 | |
8 | IRAS 13245-5036 | −0.30 ± 0.10 | 1.88 ± 0.09 | <0.91 | <1.38 | 9500 | |
9 | IRAS 14325-6428 | −0.56 ± 0.10 | 1.30 ± 0.14 | <1.27 | <1.35 | 8000 | |
10 | IRAS 14429-4539 | −0.18 ± 0.11 | 1.41 ± 0.08 | <1.36 | <1.54 | 9375 | |
11 | IRAS 19500-1709 | −0.59 ± 0.10 | 1.35 ± 0.21 | <1.38 | <1.35 | 8000 | |
12 | IRAS 22223+4327 | −0.30 ± 0.11 | 1.03 ± 0.05 | <0.94 | <0.48 | 6500 | |
13 | IRAS 22272+5435 | −0.77 ± 0.12 | 1.80 ± 0.05 | <−0.18 | <0.11 | 5750 | |
Small Magellanic Cloud | |||||||
14 | J004441.04-732136.4 | −1.34 ± 0.32 | 2.70 ± 0.30 | <0.00 | <0.52 | 6250 | |
Large Magellanic Cloud | |||||||
15 | J050632.10-714229.8 | −1.22 ± 0.18 | 1.33 ± 0.30 | <0.45 | <0.10 | 6750 | |
16 | J052043.86-692341.0 | −1.15 ± 0.20 | 1.82 ± 0.25 | <−0.45 | <−0.27 | 5750 | |
17 | J053250.69-713925.8 | −1.22 ± 0.19 | 1.99 ± 0.25 | <−0.24 | <0.19 | 5500 | |
18 | J051213.81-693537.1 | −0.56 ± 0.15 | 1.61 ± 0.06 | <0.37 | <0.78 | 5875 | |
19 | J051848.86-700246.9 | −1.03 ± 0.14 | 1.90 ± 0.07 | <−0.19 | <0.47 | 6000 |
References
- Buridge, E.M.; Burbidge, G.R. Chemical Composition of the BA II Star HD 46407 and its Bearing on Element Synthesis in Stars. Astrophys. J. 1957, 126, 357. [Google Scholar] [CrossRef]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process. Astrophys. J. 1998, 497, 388. [Google Scholar] [CrossRef]
- Goriely, S.; Mowlavi, N. Neutron-capture nucleosynthesis in AGB stars. Astron. Astrophys. 2000, 362, 599–614. [Google Scholar]
- Lugaro, M.; Campbell, S.W.; Van Winckel, H.; De Smedt, K.; Karakas, A.I.; Käppeler, F. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars. Astron. Astrophys. 2015, 583, A77. [Google Scholar] [CrossRef] [Green Version]
- Roederer, I.U.; Kratz, K.; Frebel, A.; Christlieb, N.; Pfeiffer, B.; Cowan, J.J.; Sneden, C. The End of Nucleosynthesis: Production of Lead and Thorium in the Early Galaxy. Astrophys. J. 2009, 698, 1963–1980. [Google Scholar] [CrossRef]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Merrill, S.P.W. Spectroscopic Observations of Stars of Class S. ApJ 1952, 116, 21–26. [Google Scholar] [CrossRef]
- Iben, I., Jr. Asymptotic Giant Branch Stars: Thermal Pulses, Carbon Production, and Dredge Up; Neutron Sources and S-Process Nucleosynthesis; IAU Symp. 145: Evolution of Stars: The Photospheric Abundance Connection; Michaud, G., Tutukov, A.V., Eds.; Cambridge University Press: Cambridge, UK, 1991; p. 257. [Google Scholar]
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef] [Green Version]
- Lugaro, M.; Karakas, A.I.; Stancliffe, R.J.; Rijs, C. The s-process in Asymptotic Giant Branch Stars of Low Metallicity and the Composition of Carbon-enhanced Metal-poor Stars. Astrophys. J. 2012, 747, 2. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, S.; Goriely, S.; Jorissen, A.; Plez, B. Discovery of three lead-rich stars. Nature 2001, 412, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Aoki, W.; Ryan, S.G.; Norris, J.E.; Beers, T.C.; Ando, H.; Tsangarides, S. A Subaru/High Dispersion Spectrograph Study of Lead (Pb) Abundances in Eight s-Process Element-rich, Metal-poor Stars. Astrophys. J. 2002, 580, 1149–1158. [Google Scholar] [CrossRef]
- Van Eck, S.; Goriely, S.; Jorissen, A.; Plez, B. More lead stars. Astron. Astrophys. 2003, 404, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Rose, W.K. Production of 14C and neutrons in red giants. Astrophys. J. 1977, 212, 149–158. [Google Scholar] [CrossRef]
- Siess, L.; Livio, M.; Lattanzio, J. Structure, Evolution, and Nucleosynthesis of Primordial Stars. Astrophys. J. 2002, 570, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.W.; Lattanzio, J.C. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. I. Stellar yield tables and the CEMPs. Astron. Astrophys. 2008, 490, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Hampel, M.; Karakas, A.I.; Stancliffe, R.J.; Meyer, B.S.; Lugaro, M. Learning about the Intermediate Neutron-capture Process from Lead Abundances. Astrophys. J. 2019, 887, 11. [Google Scholar] [CrossRef] [Green Version]
- Roederer, I.U.; Cowan, J.J.; Karakas, A.I.; Kratz, K.; Lugaro, M.; Simmerer, J.; Farouqi, K.; Sneden, C. The Ubiquity of the Rapid Neutron-capture Process. Astrophys. J. 2010, 724, 975–993. [Google Scholar] [CrossRef] [Green Version]
- Beers, T.C.; Christlieb, N. The Discovery and Analysis of Very Metal-Poor Stars in the Galaxy. Annu. Rev. Astron. Astrophys. 2005, 43, 531–580. [Google Scholar] [CrossRef] [Green Version]
- Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F. s-Process in low-metallicity stars-I. Theoretical predictions. Mon. Not. R. Astron. Soc. 2010, 404, 1529–1544. [Google Scholar] [CrossRef] [Green Version]
- Abate, C.; Stancliffe, R.J.; Liu, Z.W. How plausible are the proposed formation scenarios of CEMP-r/s stars? Astron. Astrophys. 2016, 587, A50. [Google Scholar] [CrossRef] [Green Version]
- Karinkuzhi, D.; Van Eck, S.; Goriely, S.; Siess, L.; Jorissen, A.; Merle, T.; Escorza, A.; Masseron, T. Low-mass low-metallicity AGB stars as an efficient i-process site explaining CEMP-rs stars. Astron. Astrophys. 2021, 645, A61. [Google Scholar] [CrossRef]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A.I.; Manick, R. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb). Astron. Astrophys. 2016, 587, A6. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P.R. Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9. Astron. Astrophys. 2015, 583, A56. [Google Scholar] [CrossRef] [Green Version]
- Mowlavi, N.; Meynet, G. Aluminum 26 production in asymptotic giant branch stars. Astron. Astrophys. 2000, 361, 959–976. [Google Scholar]
- Bailer-Jones, C.A.L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. VizieR Online Data Catalog: Distances to 1.47 billion stars in Gaia EDR3 (Bailer-Jones+, 2021). VizieR Online Data Catalog 2021, I/352. Available online: https://ui.adsabs.harvard.edu/abs/2021yCat.1352....0B/abstract (accessed on 1 November 2021).
- Reyniers, M.; Van Winckel, H. Detection of elements beyond the Ba-peak in VLT+UVES spectra of post-AGB stars. Astron. Astrophys. 2003, 408, L33–L37. [Google Scholar] [CrossRef] [Green Version]
- Abia, C.; de Laverny, P.; Wahlin, R. Chemical analysis of carbon stars in the Local Group. II. The Carina dwarf spheroidal galaxy. Astron. Astrophys. 2008, 481, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Van Winckel, H. Post-Agb Stars. Annu. Rev. Astron. Astrophys. 2003, 41, 391–427. [Google Scholar] [CrossRef]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: Candidate selection, spectral energy distributions and spectroscopic examination. Mon. Not. R. Astron. Soc. 2014, 439, 2211–2270. [Google Scholar] [CrossRef] [Green Version]
- van Aarle, E.; Van Winckel, H.; Lloyd Evans, T.; Ueta, T.; Wood, P.R.; Ginsburg, A.G. The optically bright post-AGB population of the LMC. Astron. Astrophys. 2011, 530, A90. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2015, 454, 1468–1502. [Google Scholar] [CrossRef]
- De Smedt, K. The Chemical Diversity of Post-AGB Stars in the Galaxy and the Magellanic Clouds. Ph.D. Thesis, Institute of Astronomy, KU Leuven, Leuven, Belgium, 2015. [Google Scholar]
- Siess, L. Evolution of massive AGB stars. II. model properties at non-solar metallicity and the fate of Super-AGB stars. Astron. Astrophys. 2007, 476, 893–909. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Domínguez, I.; Lederer, M.T. Evolution, Nucleosynthesis, and Yields of Low-Mass Asymptotic Giant Branch Stars at Different Metallicities. Astrophys. J. 2009, 696, 797–820. [Google Scholar] [CrossRef] [Green Version]
- Fishlock, C.K.; Karakas, A.I.; Lugaro, M.; Yong, D. Evolution and Nucleosynthesis of Asymptotic Giant Branch Stellar Models of Low Metallicity. Astrophys. J. 2014, 797, 44. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, K.; Van Winckel, H.; Karakas, A.I.; Siess, L.; Goriely, S.; Wood, P.R. Post-AGB stars in the SMC as tracers of stellar evolution: The extreme s-process enrichment of the 21 μm star J004441.04-732136.4. Astron. Astrophys. 2012, 541, A67. [Google Scholar] [CrossRef] [Green Version]
- Goriely, S.; Siess, L. S-process in hot AGB stars: A complex interplay between diffusive mixing and nuclear burning. Astron. Astrophys. 2004, 421, L25–L28. [Google Scholar] [CrossRef]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Choplin, A.; Siess, L.; Goriely, S. The intermediate neutron capture process. I. Development of the i-process in low-metallicity low-mass AGB stars. Astron. Astrophys. 2021, 648, A119. [Google Scholar] [CrossRef]
- Cristallo, S.; Karinkuzhi, D.; Goswami, A.; Piersanti, L.; Gobrecht, D. Constraints of the Physics of Low-mass AGB Stars from CH and CEMP Stars. Astrophys. J. 2016, 833, 181. [Google Scholar] [CrossRef] [Green Version]
- Denissenkov, P.A.; Herwig, F.; Woodward, P.; Andrassy, R.; Pignatari, M.; Jones, S. The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations. Mon. Not. R. Astron. Soc. 2019, 488, 4258–4270. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Karakas, A.I.; Siess, L.; Goriely, S.; Wood, P. The lead discrepancy in intrinsically s-process enriched post-AGB stars in the Magellanic Clouds. Astron. Astrophys. 2014, 563, L5. [Google Scholar] [CrossRef] [Green Version]
- Mashonkina, L.; Ryabtsev, A.; Frebel, A. Non-LTE effects on the lead and thorium abundance determinations for cool stars. Astron. Astrophys. 2012, 540, A98. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamath, D.; Van Winckel, H. The Missing Lead: Developments in the Lead (Pb) Discrepancy in Intrinsically s-Process Enriched Single Post-AGB Stars. Universe 2021, 7, 446. https://doi.org/10.3390/universe7110446
Kamath D, Van Winckel H. The Missing Lead: Developments in the Lead (Pb) Discrepancy in Intrinsically s-Process Enriched Single Post-AGB Stars. Universe. 2021; 7(11):446. https://doi.org/10.3390/universe7110446
Chicago/Turabian StyleKamath, Devika, and Hans Van Winckel. 2021. "The Missing Lead: Developments in the Lead (Pb) Discrepancy in Intrinsically s-Process Enriched Single Post-AGB Stars" Universe 7, no. 11: 446. https://doi.org/10.3390/universe7110446
APA StyleKamath, D., & Van Winckel, H. (2021). The Missing Lead: Developments in the Lead (Pb) Discrepancy in Intrinsically s-Process Enriched Single Post-AGB Stars. Universe, 7(11), 446. https://doi.org/10.3390/universe7110446