Global Dynamics of the Hořava–Lifshitz Cosmological Model in a Non-Flat Universe with Non-Zero Cosmological Constant
Abstract
:1. Introduction
2. The Cosmological Equations
- Case I: and , so system (7) is symmetric with respect to the x-axis and it has the invariant surface .
- Case II: and , so system (7) is symmetric with respect to the x-axis and it has not the invariant surface.
- Case III: and , so system (7) is symmetric with respect to the origin and with respect to the x-axis, and it has the invariant surface .
- Case IV: and , so system (7) is symmetric with respect to the origin and with respect to the x-axis, and it has not the invariant surface.
3. Case I:
3.1. Phase Portraits on the Invariant Planes and Surface
3.1.1. The Invariant Plane
3.1.2. The Invariant Plane
3.1.3. The Invariant Surface
3.1.4. The Finite Equilibrium Points
3.1.5. Phase Portrait on the Poincaré Sphere at Infinity
3.2. Phase Portrait Inside the Poincaré Ball Restricted to the Physical Region of Interest
3.3. Dynamics in the Interior of the Regions and
4. Case II:
Dynamics in the Interior of the Regions and
5. Case III:
5.1. Phase Portraits on the Invariant Planes and Surface
5.1.1. The Invariant Plane
5.1.2. The Invariant Plane
5.1.3. The Invariant Plane
5.1.4. The Invariant Surface
5.1.5. The Finite Equilibrium Points
5.1.6. Phase Portrait on the Poincaré Sphere at Infinity
5.2. Phase Portrait Inside the Poincaré Ball Restricted to the Physical Region of Interest
5.3. Dynamics in the Interior of the Region
6. Case IV:
Dynamics in the Interior of the Region
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Cotsakis, S. Geodesic incompleteness and partially covariant gravity. Universe 2021, 7, 126. [Google Scholar] [CrossRef]
- Bajardi, F.; Bascone, F.; Capozziello, S. Renormalizability of alternative theories of gravity: Differences between power counting and entropy argument. Universe 2021, 7, 148. [Google Scholar] [CrossRef]
- Abreu, E.M.; Mendes, A.C.; Oliveira-Neto, G.; Neto, J.A.; Rodrigues, L.R.; de Oliveira, M.S. Hořava-Lifshitz cosmological models with noncommutative phase space variables. Gen. Relativ. Gravit. 2019, 51, 95. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R. Matter bounce in Hořava-Lifshitz cosmology. Phys. Rev. D 2009, 80, 043516. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Urakawa, Y.; Yamaguchi, M. Large scale evolution of the curvature perturbation in Hořava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 2009, 2009, 015. [Google Scholar] [CrossRef] [Green Version]
- Carloni, S.; Elizalde, E.; Silva, P.J. An analysis of the phase space of Hořava-Lifshitz cosmologies. Class. Quantum Gravity 2010, 27, 045004. [Google Scholar] [CrossRef]
- Chen, B. On Hořava-Lifshitz cosmology. Chin. Phys. C 2011, 35, 429–435. [Google Scholar] [CrossRef]
- Leon, G.; Saridakis, E.N. Phase-space analysis of Hořava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 2009, 2009, 006. [Google Scholar] [CrossRef]
- Leon, G.; Fadragas, C.R. Cosmological Dynamical Systems: And Their Applications; Lambert Academic Publishing, GmbH & Co. KG: Saarbrücken, Germany, 2012. [Google Scholar]
- Leon, G.; Paliathanasis, A. Extended phase-space analysis of the Hořava-Lifshitz cosmology. Eur. Phys. J. C 2019, 79, 746. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Leon, G. Cosmological solutions in Hořava-Lifshitz scalar field theory. Zeitschrift für Naturforschung A 2020, 75, 523–532. [Google Scholar] [CrossRef]
- Fadragas, C.R.; Leon, G.; Saridakis, E.N. Dynamical analysis of anisotropic scalar-field cosmologies for a wide range of potentials. Class. Quantum Gravity 2014, 31, 075018. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.B.; Llibre, J. Global dynamics of the Hořava-Lifshitz cosmological system. Gen. Relativ. Gravit. 2019, 51, 152. [Google Scholar] [CrossRef]
- Gao, F.B.; Llibre, J. Global dynamics of Hořava-Lifshitz cosmology with non-zero curvature and a wide range of potentials. Eur. Phys. J. C 2020, 80, 137. [Google Scholar] [CrossRef]
- Gao, F.B.; Llibre, J. Global dynamics of the Hořava-Lifshitz cosmology in the presence of non-zero cosmological constant in a flat space. arXiv 2021, arXiv:2111.08377v1. Available online: https://arxiv.org/abs/2111.08377v1 (accessed on 16 November 2021).
- Gao, X.; Wang, Y.; Brandenberger, R.; Riotto, A. Cosmological perturbations in Hořava-Lifshitz gravity. Phys. Rev. D 2010, 81, 083508. [Google Scholar] [CrossRef] [Green Version]
- Escobar, D.; Fadragas, C.R.; Leon, G.; Leyva, Y. Asymptotic behavior of a scalar field with an arbitrary potential trapped on a Randall-Sundrum’s braneworld: The effect of a negative dark radiation term on a Bianchi I brane. Astrophys. Space Sci. 2014, 349, 575–602. [Google Scholar] [CrossRef] [Green Version]
- Alho, A.; Hell, J.; Uggla, C. Global dynamics and asymptotics for monomial scalar field potentials and perfect fluids. Class. Quantum Gravity 2015, 32, 145005. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C. Inflation as an attractor in scalar cosmology. Mod. Phys. Lett. A 2013, 28, 1350089. [Google Scholar] [CrossRef] [Green Version]
- Chervon, S.; Fomin, I.; Yurov, V.; Yurov, A. Scalar Field Cosmology; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2019. [Google Scholar]
- Kiritsis, E.; Kofinas, G. Hořava-Lifshitz cosmology. Nucl. Phys. B 2009, 821, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Lepe, S.; Saavedra, J. On Hořava-Lifshitz cosmology. Astrophys. Space Sci. 2014, 350, 839–843. [Google Scholar] [CrossRef]
- Cordero, R.; García-Compeán, H.; Turrubiates, F.J. A phase space description of the FLRW quantum cosmology in Hořava-Lifshitz type gravity. Gen. Relativ. Gravit. 2019, 51, 138. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, N.A.; Czuchry, E. Hořava-Lifshitz cosmology in light of new data. Phys. Dark Universe 2019, 23, 100253. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N. Aspects of Hořava-Lifshitz cosmology. Int. J. Mod. Phys. D 2011, 20, 1485–1504. [Google Scholar] [CrossRef] [Green Version]
- Tawfik, A.; Dahab, E.A.E. FLRW cosmology with Hořava-Lifshitz gravity: Impacts of equations of state. Int. J. Theor. Phys. 2017, 56, 2122–2139. [Google Scholar] [CrossRef] [Green Version]
- Cognola, G.; Myrzakulov, R.; Sebastiani, L.; Vagnozzi, S.; Zerbini, S. Covariant Hořava-like and mimetic Horndeski gravity: Cosmological solutions and perturbations. Class. Quantum Gravity 2016, 33, 225014. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, F.; Vakili, B.; Ardehali, H. Hořava-Lifshitz scalar field cosmology: Classical and quantum viewpoints. Adv. High Energy Phys. 2021, 2021, 6617910. [Google Scholar] [CrossRef]
- Casalino, A.; Rinaldi, M.; Sebastiani, L.; Vagnozzi, S. Alive and well: Mimetic gravity and a higher-order extension in light of GW170817. Class. Quantum Gravity 2019, 36, 017001. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N. Hořava-Lifshitz dark energy. Eur. Phys. J. C 2010, 67, 229–235. [Google Scholar] [CrossRef]
- Jamil, M.; Saridakis, E.N. New agegraphic dark energy in Hořava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 2010, 2010, 028. [Google Scholar] [CrossRef] [Green Version]
- Setare, M.R.; Jamil, M. Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 2010, 2010, 010. [Google Scholar] [CrossRef] [Green Version]
- Setare, M.R.; Momeni, D.; Moayedi, S.K. Interacting dark energy in Hořava-Lifshitz cosmology. Astrophys. Space Sci. 2011, 338, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Sheykhi, A.; Ghaffari, S.; Moradpour, H. Ghost dark energy in the deformed Hořava-Lifshitz cosmology. Int. J. Mod. Phys. D 2019, 28, 1950080. [Google Scholar] [CrossRef]
- Cai, R.G.; Cao, L.M.; Ohta, N. Topological black holes in Hořava-Lifshitz gravity. Phys. Rev. D 2009, 80, 024003. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, M. Gravitational radiation and black hole formation from gravitational collapse in theories of gravity with broken Lorentz symmetry. Ph.D. Thesis, Baylor University, Waco, TX, USA, 2019; p. 22585106. [Google Scholar]
- Pourhassan, B. PV criticality of the second order quantum corrected Hořava-Lifshitz black hole. Eur. Phys. J. C 2019, 79, 740. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.Z.; Zhao, H.H.; Zhang, L.C. Phase transition of the Horava-Lifshitz AdS black holes. Int. J. Theor. Phys. 2021, 60, 1963–1971. [Google Scholar] [CrossRef]
- Poshteh, M.B.J.; Mann, R.B. Thermodynamics of z=4 Hořava-Lifshitz black holes. Phys. Rev. D 2021, 103, 104024. [Google Scholar] [CrossRef]
- Mestra-Páez, J.; Pen˜a, J.M.; Restuccia, A. Gravitational waves in Hořava-Lifshitz anisotropic gravity. arXiv 2021, arXiv:2105.00951v2. [Google Scholar]
- Lin, K.; Yang, N.; Li, J. Electromagnetic quasinormal modes in Hořava-Lifshitz gravity. Int. J. Theor. Phys. 2011, 50, 48–55. [Google Scholar] [CrossRef]
- Borzou, A.; Lin, K.; Wang, A. Static electromagnetic fields and charged black holes in general covariant theory of Hořava-Lifshitz gravity. J. Cosmol. Astropart. Phys. 2012, 2012, 025. [Google Scholar] [CrossRef]
- Bellorín, J.; Restuccia, A.; Tello-Orti, F. Anisotropic coupling of gravity and electromagnetism in Hořava-Lifshitz theory. Phys. Rev. D 2009, 98, 104018. [Google Scholar] [CrossRef] [Green Version]
- Restucciaa, A.; Tello-Ortizb, F. Pure electromagnetic-gravitational interaction in Hořava-Lifshitz theory at the kinetic conformal point. Eur. Phys. J. C 2020, 80, 86. [Google Scholar] [CrossRef]
- Wang, A.Z. Hořava gravity at a Lifshitz point: A progress report. Int. J. Mod. Phys. D 2017, 26, 1730014. [Google Scholar] [CrossRef] [Green Version]
- Mukohyama, S. Hořava-Lifshitz cosmology: A review. Class. Quantum Gravity 2010, 27, 223101. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P. Hořava-Lifshitz gravity: A status report. J. Phys. Conf. Ser. 2011, 283, 012034. [Google Scholar] [CrossRef] [Green Version]
- Appignani, C.; Casadio, R.; Shankaranarayanan, S. The cosmological constant and Hořava-Lifshitz gravity. J. Cosmol. Astropart. Phys. 2010, 2010, 006. [Google Scholar] [CrossRef]
- Akarsu, Ö; Barrow, J.D.; Escamilla, L.A.; Vazquez, J.A. Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant. Phys. Rev. D 2020, 101, 063528. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Hiding the cosmological constant. Phys. Rev. Lett. 2019, 123, 131302. [Google Scholar] [CrossRef] [Green Version]
- Handley, W. Curvature tension: Evidence for a closed universe. Phys. Rev. D 2021, 103, L041301. [Google Scholar] [CrossRef]
- Valentino, E.D.; Melchiorri, A.; Silk, J. Planck evidence for a closed universe and a possible crisis for cosmology. Nat. Astron. 2020, 4, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Dumortier, F.; Llibre, J.; Artés, J.C. Qualitative Theory of Planar Differential Systems; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cima, A.; Llibre, J. Bounded polynomial vector fields. Trans. Am. Math. Soc. 1990, 318, 557–579. [Google Scholar] [CrossRef]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer: New York, NY, USA, 2004. [Google Scholar]
- Álvarez, M.J.; Ferragut, A.; Jarque, X. A survey on the blow up technique. Int. J. Bifurc. Chaos 2011, 21, 3103–3118. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, M.W.; Pugh, C.C.; Shub, M. Invariant Manifolds; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
Values of s | Equilibrium Points |
---|---|
and are unstable nodes, is an unstable saddle | |
is an unstable node, is an unstable saddle-node | |
and are unstable nodes, is an unstable saddle | |
is an unstable saddle-node, is an unstable node | |
is an unstable saddle, and are unstable nodes |
Values of s | Equilibrium Points |
---|---|
and are unstable nodes, is an unstable saddle | |
is an unstable node, is an unstable saddle-node | |
and are unstable nodes, is an unstable saddle | |
and are unstable nodes, is a semi-hyperbolic unstable saddle | |
and are unstable nodes, is stable node, and are unstable saddles | |
and are unstable nodes, is a semi-hyperbolic unstable saddle | |
and are unstable nodes, is an unstable saddle | |
is an unstable saddle-node, is an unstable node | |
is an unstable saddle, and are unstable nodes |
Values of s | Equilibrium Points |
---|---|
and are unstable nodes, is a saddle | |
is an unstable node, and are non-hyperbolic equilibrium points | |
and are unstable nodes, is a saddle | |
and are unstable nodes, , and are non-hyperbolic equilibrium points | |
and are unstable nodes, , and are saddles | |
and are unstable nodes, , and are non-hyperbolic equilibrium points | |
and are unstable nodes, is a saddle | |
and are non-hyperbolic equilibrium points, is an unstable node | |
is a saddle, and are unstable nodes |
Functions | Positive | Negative |
---|---|---|
Functions | Positive | Negative |
---|---|---|
Subregions | Corresponding Region | Increase or Decrease |
---|---|---|
Functions | Positive | Negative |
---|---|---|
Functions | Positive | Negative |
---|---|---|
Subregions | Corresponding Region | Increase or Decrease |
---|---|---|
Functions | Positive | Negative |
---|---|---|
Subregions | Corresponding Region | Increase or Decrease |
---|---|---|
Functions | Positive | Negative |
---|---|---|
Subregions | Corresponding Region | Increase or Decrease |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Llibre, J. Global Dynamics of the Hořava–Lifshitz Cosmological Model in a Non-Flat Universe with Non-Zero Cosmological Constant. Universe 2021, 7, 445. https://doi.org/10.3390/universe7110445
Gao F, Llibre J. Global Dynamics of the Hořava–Lifshitz Cosmological Model in a Non-Flat Universe with Non-Zero Cosmological Constant. Universe. 2021; 7(11):445. https://doi.org/10.3390/universe7110445
Chicago/Turabian StyleGao, Fabao, and Jaume Llibre. 2021. "Global Dynamics of the Hořava–Lifshitz Cosmological Model in a Non-Flat Universe with Non-Zero Cosmological Constant" Universe 7, no. 11: 445. https://doi.org/10.3390/universe7110445
APA StyleGao, F., & Llibre, J. (2021). Global Dynamics of the Hořava–Lifshitz Cosmological Model in a Non-Flat Universe with Non-Zero Cosmological Constant. Universe, 7(11), 445. https://doi.org/10.3390/universe7110445