f(T, B) Cosmography for High Redshifts
Abstract
:1. Introduction
2. Gravity on Basis
3. Extended Cosmography for Gravity
Standard Case
4. Observational Cosmographic Constraints
- Pantheon compilation. The recent SNeIa compilation known as the Pantheon sample (SN) [69] consists of 1048 SNeIa compressed in 40 redshift bins. As already analysed in the literature, SNeIa can provide estimates of the distance modulus, , the theoretically predicted value of which is related to the luminosity distance we obtain in Equations (46) and (48) as followswhere the luminosity distance is given in Mpc. In this distance modulus expression, we should include the nuisance parameter, , as an unknown offset of the supernovae absolute magnitude (and including other possible systematics), which can also be degenerate with the value of . As is standard, we assume spatial flatness and suppose that can be related to the comoving distance D using where c is the speed of light. We obtain The normalised Hubble function is derived from the inverse of the derivative of with respect to z so that we can write downwhere is the value of the Hubble constant which we consider as a prior to normalise . For our sample, we calibrated the data using a value obtained from late Universe measurements corresponding to from SH0ES + H0LiCOW, with the corresponding value for the nuisance parameter .
- New GRB dataset. After the reconstruction/prior calibration of from SN, we can use them to calibrate the luminosity correlations of the GRB data set. The correlations obtained from this calibration can be expressed by considering a generic exponential form , where this assumption is derived by consider the X-ray light curves of GRBs constructed from the combination of Burst Alert Telescope and X-ray telescope data in the way described in [70] and fitted using one or two components from the optional afterglow via the parametrised Amati relation and the Ghirlanda relation [71], where this expression can be re-expressed in linear form as , with , and . Additionally, the six luminosity correlations measured are reported in [72].To calibrate these six expressions with a SNeIa sample (in particular, for Pantheon sample), we consider that GRBs radiate isotropically by computing their bolometric peak flux, where uncertainty on L propagates from the uncertainties on bolometric peak flux , and the luminosity distance of supernovae. With this new sample we calibrated the luminosity correlations by maximizing the likelihood [73]The best-fitting parameters and their uncertainties,, are reported in Tables 1 and 2 from [72].
- Cosmic Chronometers. We consider a sample of 31 model-independent measurements which use the differential age method proposed by [74].
- Case (a). Fixed . Using the expression in Equation (35) and the values and (which relates to a pure power law in the boundary term theory), we obtain and , using the full Pantheon + GRB + CC using a Markov chain Monte Carlo (MCMC) analysis. For this case we obtain a Universe that is in decelerating phase. This sets the first constraint on the form of , where the cannot be fixed if we need to follow the correct cosmic acceleration. See Figure 1 for the posterior plot. Notice that once we add GRB we obtain the confidence level (C.L) overlaps on the Pantheon solely.
- Case (b). Fixed . Using the expression for j (37) and the values and , we obtain , , and using the full sample Pantheon + GRB+ CC with an MCMC analysis. For this case we obtain a Universe that is in fact accelerating as expected. See Figure 2 for details of the posterior. Here, we notice that the values of the higher derivative cosmographic parameters start to become reasonable.
- Case (c). Fixed . Using the expression for s (37) and the values and , we obtain , , and using the full sample Pantheon + GRB+ CC. Notice that here the cosmography can go beyond . For this case we obtain a Universe that is in fact accelerating as expected and the addition of GRB explore the necessity of a high cosmography. See Figure 3.
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Derivations for the Power Law Model Cosmography
Appendix B. Phenomenological Considerations
References
- Dodelson, S. Modern Cosmology; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: Hoboken, NJ, USA, 1972. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Binney, J. Galactic Dynamics/James Binney and Scott Tremaine, 2nd ed.; Princeton Series in Astrophysics; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Bernal, J.L.; Verde, L.; Riess, A.G. The trouble with H0. J. Cosmol. Astropart. Phys. 2016, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, O.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E. Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension. Astropart. Phys. 2021, 131, 102605. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battye, R.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, O.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E. Cosmology intertwined III: fσ8 and S8. Astropart. Phys. 2021, 131, 102604. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Appleby, S.; Linder, E.V. The Well-Tempered Cosmological Constant. J. Cosmol. Astropart. Phys. 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Gaitskell, R. Direct detection of dark matter. Ann. Rev. Nucl. Part. Sci. 2004, 54, 315–359. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L. Dark matter detection. J. Phys. G 2016, 43, 044001. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rept. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Barboza, E.M., Jr.; Alcaniz, J.S. A parametric model for dark energy. Phys. Lett. B 2008, 666, 415–419. [Google Scholar] [CrossRef]
- Jassal, H.K.; Bagla, J.S.; Padmanabhan, T. Observational constraints on low redshift evolution of dark energy: How consistent are different observations? Phys. Rev. D 2005, 72, 103503. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, G. Constraining the equation of state of the universe from distant type Ia supernovae and cosmic microwave background anisotropies. Mon. Not. R. Astron. Soc. 1999, 310, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astier, P. Can luminosity distance measurements probe the equation of state of dark energy. Phys. Lett. B 2001, 500, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Cooray, A.R.; Huterer, D. Gravitational lensing as a probe of quintessence. Astrophys. J. Lett. 1999, 513, L95–L98. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Rivera, C.; Nájera, A. Dynamical dark energy models in the light of Gravitational-Wave Transient Catalogues. arXiv 2021, arXiv:2103.02097. [Google Scholar]
- Colgáin, E.O.; Sheikh-Jabbari, M.M.; Yin, L. Can dark energy be dynamical? Phys. Rev. D 2021, 104, 023510. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B.; De Laurentis, M.; Olmo, G.J.; Akrami, Y.; Bahamonde, S. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2021, arXiv:2105.12582. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Banerjee, A.; Colgáin, E.O. Cosmography and flat ΛCDM tensions at high redshift. Phys. Rev. D 2020, 102, 123532. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Di Valentino, E. Teleparallel Gravity: From Theory to Cosmology. arXiv 2021, arXiv:2106.13793. [Google Scholar]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [Green Version]
- Krssak, M.; van den Hoogen, R.; Pereira, J.; Böhmer, C.; Coley, A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Gonzalez, P.; Vasquez, Y. Teleparallel Equivalent of Lovelock Gravity. Phys. Rev. D 2015, 92, 124023. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Dialektopoulos, K.F.; Levi Said, J. Can Horndeski Theory be recast using Teleparallel Gravity? Phys. Rev. D 2019, 100, 064018. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. f(R) gravity: Successes and challenges. In Proceedings of the 18th SIGRAV Conference, Urbino, Italy, 9–15 September 2008. [Google Scholar]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef] [Green Version]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Cosmological perturbations in f(T) gravity. Phys. Rev. D 2011, 83, 023508. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Flathmann, K.; Pfeifer, C. Photon sphere and perihelion shift in weak f(T) gravity. Phys. Rev. D 2019, 100, 084064. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Rivera, C.; Levi Said, J. Cosmological viable models in f(T, B) gravity as solutions to the H0 tension. Class. Quant. Grav. 2020, 37, 165002. [Google Scholar] [CrossRef]
- Bahamonde, S.; Böhmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. D 2015, 92, 104042. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Transirico, M. The gravitational energy-momentum pseudotensor: The cases of f(R) and f(T) gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850164. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Capozziello, S. Noether Symmetry Approach in f(T, B) teleparallel cosmology. Eur. Phys. J. C 2017, 77, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paliathanasis, A. de Sitter and Scaling solutions in a higher-order modified teleparallel theory. J. Cosmol. Astropart. Phys. 2017, 1708, 027. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, G.; Levi Said, J.; Gakis, V.; Saridakis, E.N. Gravitational Waves in Modified Teleparallel Theories. Phys. Rev. D 2018, 97, 124064. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Zubair, M.; Abbas, G. Thermodynamics and cosmological reconstruction in f(T, B) gravity. Phys. Dark Univ. 2018, 19, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Wright, M. Conformal transformations in modified teleparallel theories of gravity revisited. Phys. Rev. D 2016, 93, 103002. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, G.; Levi Said, J.; Finch, A. Gravitoelectromagnetism, Solar System Test and Weak-Field Solutions in f(T, B) Gravity with Observational Constraints. Universe 2020, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Capriolo, M.; Caso, L. Weak Field Limit and Gravitational Waves in f(T, B) Teleparallel Gravity. Eur. Phys. J. C 2020, 80, 156. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Levi Said, J.; Zubair, M. Solar System Tests in Modified Teleparallel Gravity. arXiv 2020, arXiv:2006.06750. [Google Scholar] [CrossRef]
- Hehl, F.W.; Von Der Heyde, P.; Kerlick, G.D.; Nester, J.M. General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M. Variational Principles in Teleparallel Gravity Theories. Universe 2021, 7, 114. [Google Scholar] [CrossRef]
- Weitzenböock, R. Invariantentheorie; Noordhoff: Gronningen, The Netherlands, 1923. [Google Scholar]
- Ortín, T. Gravity and Strings; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Zubair, M.; Durrani, L.R.; Waheed, S. Reconciling Tsallis holographic dark energy models in modified f(T, B) gravitational framework. Eur. Phys. J. Plus 2021, 136, 943. [Google Scholar] [CrossRef]
- Zubair, M.; Durrani, L.R. A study of the cosmologically reconstructed f(T, B) gravity from the cosmological jerk parameter. Eur. Phys. J. Plus 2020, 135, 668. [Google Scholar] [CrossRef]
- Zubair, M.; Waheed, S.; Atif Fayyaz, M.; Ahmad, I. Energy constraints and the phenomenon of cosmic evolution in the f(T, B) framework. Eur. Phys. J. Plus 2018, 133, 452. [Google Scholar] [CrossRef] [Green Version]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quant. Grav. 2016, 33, 115009. [Google Scholar] [CrossRef] [Green Version]
- Tamanini, N.; Boehmer, C.G. Good and bad tetrads in f(T) gravity. Phys. Rev. D 2012, 86, 044009. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Cardone, V.F.; Farajollahi, H.; Ravanpak, A. Cosmography in f(T)-gravity. Phys. Rev. D 2011, 84, 043527. [Google Scholar] [CrossRef] [Green Version]
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 2012, 86, 123516. [Google Scholar] [CrossRef] [Green Version]
- Franco, G.A.R.; Escamilla-Rivera, C.; Levi Said, J. Stability analysis for cosmological models in f(T, B) gravity. Eur. Phys. J. C 2020, 80, 677. [Google Scholar] [CrossRef]
- Caruana, M.; Farrugia, G.; Levi Said, J. Cosmological bouncing solutions in f(T, B) gravity. Eur. Phys. J. C 2020, 80, 640. [Google Scholar] [CrossRef]
- Bahamonde, S.; Golovnev, A.; Guzmán, M.J.; Said, J.L.; Pfeifer, C. Black Holes in f(T, B) Gravity: Exact and Perturbed Solutions. arXiv 2021, arXiv:2110.04087. [Google Scholar]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Qi, S.; Lu, T. A new luminosity relation for gamma-ray bursts and its implication. Astrophys. J. 2010, 717, 1274–1278. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, F.Y. Calibration of Gamma-Ray Burst Luminosity Correlations Using Gravitational Waves as Standard Sirens. Astrophys. J. 2019, 873, 39. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Rivera, C.; Carvajal, M.; Zamora, C.; Hendry, M. Neural networks and standard cosmography with newly calibrated high redshift GRB observations. arXiv 2021, arXiv:2109.00636. [Google Scholar]
- D’Agostini, G. Fits, and especially linear fits, with errors on both axes, extra variance of the data points and other complications. arXiv 2005, arXiv:physics/0511182. [Google Scholar]
- Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37–42. [Google Scholar] [CrossRef]
- Escamilla-Rivera, C.; Levi Said, J.; Mifsud, J. Performance of Non-Parametric Reconstruction Techniques in the Late-Time Universe. arXiv 2021, arXiv:2105.14332. [Google Scholar] [CrossRef]
- Bernardo, R.C.; Levi Said, J. Towards a model-independent reconstruction approach for late-time Hubble data. J. Cosmol. Astropart. Phys. 2021, 08, 027. [Google Scholar] [CrossRef]
- Briffa, R.; Capozziello, S.; Levi Said, J.; Mifsud, J.; Saridakis, E.N. Constraining teleparallel gravity through Gaussian processes. Class. Quant. Grav. 2020, 38, 055007. [Google Scholar] [CrossRef]



| Cases | Pantheon SN + CC | Pantheon SN + CC + GRB | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| (a) | Fixed | - | - | Fixed | - | - | ||||
| (b) | Fixed | - | Fixed | - | ||||||
| (c) | Fixed | Fixed | ||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escamilla-Rivera, C.; Rave-Franco, G.; Levi-Said, J. f(T, B) Cosmography for High Redshifts. Universe 2021, 7, 441. https://doi.org/10.3390/universe7110441
Escamilla-Rivera C, Rave-Franco G, Levi-Said J. f(T, B) Cosmography for High Redshifts. Universe. 2021; 7(11):441. https://doi.org/10.3390/universe7110441
Chicago/Turabian StyleEscamilla-Rivera, Celia, Geovanny Rave-Franco, and Jackson Levi-Said. 2021. "f(T, B) Cosmography for High Redshifts" Universe 7, no. 11: 441. https://doi.org/10.3390/universe7110441
APA StyleEscamilla-Rivera, C., Rave-Franco, G., & Levi-Said, J. (2021). f(T, B) Cosmography for High Redshifts. Universe, 7(11), 441. https://doi.org/10.3390/universe7110441

