Excess of Sodium Ions Density Required to Create a Wide Current at the Hermean Magnetopause
Abstract
:1. Introduction
2. Sodium Ions Predominate out of the Magnetosphere
2.1. Northward IMF
2.2. Southward IMF
3. Sodium Ions Predominate in the Magnetosphere
3.1. Northward IMF
3.2. Southward IMF
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milillo, A.; Wurz, P.; Orsini, S.; Delcourt, D.; Kallio, E.; Killen, M.R.; Lammer, H.; Massetti, S.; Mura, A.; Barabash, S.; et al. Surface-exosphere-magnetosphere system of Mercury. Space Sci. Rev. 2005, 117, 397–443. [Google Scholar] [CrossRef]
- Killen, R.; Cremonese, G.; Lammer, H.; Orsini, S.; Potter, A.E.; Sprague, A.L.; Wurz, P.; Khodachenko, M.L.; Lichtenegger, H.I.M.; Milillo, A.; et al. Processes that Promote and Deplete the Exosphere of Mercury. Space Sci. Rev. 2007, 132, 433–509. [Google Scholar] [CrossRef] [Green Version]
- Seki, K.; Nagy, A.; Jackman, C.M.; Crary, F.; Fontaine, D.; Zarka, P.; Wurz, P.; Milillo, A.; Slavin, J.A.; Delcourt, D.C.; et al. A review of general physical and chemical processes related to plasma sources and losses for solar system magnetospheres. Space Sci. Rev. 2015, 192, 27–89. [Google Scholar] [CrossRef]
- Milillo, A.; Fujimoto, M.; Murakami, G.; Benkhoff, J.; Zender, J.; Aizawa, S.; Dósa, M.; Griton, L.; Heyner, D.; Ho, G.; et al. Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission. Space Sci. Rev. 2020, 216, 93. [Google Scholar] [CrossRef]
- Potter, A.E.; Morgan, T.H. Sodium and potassium atmospheres of Mercury. Planet. Space Sci. 1997, 45, 1. [Google Scholar] [CrossRef]
- Yagi, M.; Seki, K.; Matsumoto, Y.; Delcourt, D.; Leblanc, F. Global structure and sodium ion dynamics in Mercury’s magnetosphere with the offset dipole. J. Geophys. Res. Space Phys. 2017, 122, 11. [Google Scholar] [CrossRef]
- Sarantos, M.; Slavin, J.A.; Benna, M.; Boardsen, S.A.; Killen, R.M.; Schriver, D.; Trávníček, P. Sodium-ion pickup observed above the magnetopause during MESSENGER’S first Mercury flyby: Constraints on neutral exospheric models. Geophys. Res. Lett. 2009, 36, L04106. [Google Scholar] [CrossRef]
- Slavin, J.A.; Holzer, R.E. The effect of erosion on the solar wind stand off distance at Mercury. J. Geophys. Res. 1979, 84, 2076–2082. [Google Scholar] [CrossRef]
- Slavin, J.A.; Acuña, M.H.; Anderson, B.J.; Baker, D.N.; Mehdi Benna, M.; Gloeckler, G.; Gold, R.E.; Ho, G.C.; Killen, R.M.; Korth, H.; et al. Mercury’s magnetosphere after MESSENGER’s first flyby. Science 2008, 321, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Belenkaya, E. Currents at the subsolar low shear magnetopause. J. Geophys. Res. 2001, 106, 25437–25450. [Google Scholar] [CrossRef]
- Belenkaya, E.; Pensionerov, I. What density of magnetosheath sodium ions can provide the observed decrease in the magnetic field of the “Double Magnetopause” during the first MESSENGER flyby? Symmetry 2021, 13, 1168. [Google Scholar] [CrossRef]
- Mϋller, J.; Simon, S.; Wang, Y.-C.; Motschmann, U.; Heyner, D.; Schule, J.; Ip, W.-H.; Kleindienst, G.; Pringle, G. Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. Icarus 2012, 218, 666–687. [Google Scholar] [CrossRef]
- Slavin, J.A.; Acuña, M.H.; Anderson, B.J.; Baker, D.N.; Mehdi Benna Boardsen, S.A.; Gloeckler, G.; Gold, R.E.; Ho, G.C.; Korth, H.; Krimigis, S.M.; et al. MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science 2009, 324, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Raines, J.M.; DiBraccio, G.A.; Cassidy, T.A.; Delcourt, D.C.; Fujimoto, M.; Jia, X.; Mangano, V.; Milillo, A.; Sarantos, M.; Slavin, J.A.; et al. Plasma Sources in Planetary Magnetospheres: Mercury. Space Sci. Rev. 2015, 192, 91–144. [Google Scholar] [CrossRef] [Green Version]
- Heyner, D.; Auster, H.-U.; Fornacon, K.-H.; Carr, C.; Richter, I.; Mieth, J.Z.D.; Kolhey, P.; Exner, W.; Motschmann, U.; Baumjohann, W.A.; et al. The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field? Space Sci. Rev. 2021, 217, 52. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belenkaya, E.; Pensionerov, I.; Alexeev, I.; Parunakian, D. Excess of Sodium Ions Density Required to Create a Wide Current at the Hermean Magnetopause. Universe 2021, 7, 355. https://doi.org/10.3390/universe7100355
Belenkaya E, Pensionerov I, Alexeev I, Parunakian D. Excess of Sodium Ions Density Required to Create a Wide Current at the Hermean Magnetopause. Universe. 2021; 7(10):355. https://doi.org/10.3390/universe7100355
Chicago/Turabian StyleBelenkaya, Elena, Ivan Pensionerov, Igor Alexeev, and David Parunakian. 2021. "Excess of Sodium Ions Density Required to Create a Wide Current at the Hermean Magnetopause" Universe 7, no. 10: 355. https://doi.org/10.3390/universe7100355
APA StyleBelenkaya, E., Pensionerov, I., Alexeev, I., & Parunakian, D. (2021). Excess of Sodium Ions Density Required to Create a Wide Current at the Hermean Magnetopause. Universe, 7(10), 355. https://doi.org/10.3390/universe7100355