A Plausible Model of Inflation Driven by Strong Gravitational Wave Turbulence
Abstract
:1. Introduction
2. Friedmann Equations
3. Metric Cascades in GW Turbulence
4. Condensate and Inflation
5. Fossil Spectrum and CMB
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Universe Expansion Driven by Nonlinear Gravitational Wave Interactions
References
- Einstein, A. Die Feldgleichungen der Gravitation. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin); Springer: Berlin, Germany, 1915; pp. 844–847. [Google Scholar]
- Weinberg, S. Cosmology; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Peter, P.; Pinto-Neto, N. Cosmology without inflation. Phys. Rev. D 2008, 78, 063506. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Ade, P.A.R.; Aghanim, A.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar]
- Sirunyan, A.; CMS Collaboration. Observation of tH production. Phys. Rev. Lett. 2018, 120, 231801. [Google Scholar] [CrossRef] [PubMed]
- Binétruy, P.; Bohé, A.; Caprini, C.; Dufaux, J.F. Cosmological backgrounds of gravitational waves and eLISA/NGO: Phase transitions, cosmic strings and other sources. J. Cosm. Astrop. Phys. 2012, 6, 027. [Google Scholar] [CrossRef]
- Goldwirth, D.; Piran, T. Initial conditions for inflation. Phys. Rep. 1992, 214, 223–292. [Google Scholar] [CrossRef]
- Hollands, S.; Wald, R. Essay: An Alternative to Inflation. Gen. Relat. Grav. 2002, 34, 2043–2055. [Google Scholar] [CrossRef] [Green Version]
- Ijjas, A.; Steinhardt, P.; Loeb, A. Inflationary paradigm in trouble after Planck. Phys. Lett. B 2013, 723, 261–266. [Google Scholar] [CrossRef]
- Ijjas, A.; Steinhardt, P.; Loeb, A. Inflationary schism. Phys. Lett. B 2014, 736, 142–146. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Galtier, S.; Nazarenko, S.V. Turbulence of weak gravitational waves in the early Universe. Phys. Rev. Lett. 2017, 119, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldreich, P.; Sridhar, S. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys. J. 1995, 438, 763–775. [Google Scholar] [CrossRef]
- Nazarenko, S.V.; Schekochihin, A.A. Critical balance in magnetohydrodynamic, rotating and stratified turbulence: Towards a universal scaling conjecture. J. Fluid Mech. 2011, 677, 134–153. [Google Scholar] [CrossRef]
- Newell, A.C.; Rumpf, B. Wave Turbulence. Ann. Rev. Fluid Mech. 2011, 43, 59–78. [Google Scholar] [CrossRef]
- Passot, T.; Sulem, P.L. A Model for the Non-universal Power Law of the Solar Wind Sub-ion-scale Magnetic Spectrum. Astrophys. J. 2015, 812, L37. [Google Scholar] [CrossRef] [Green Version]
- Meyrand, R.; Galtier, S.; Kiyani, K.H. Direct Evidence of the Transition from Weak to Strong Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2016, 116, 105002. [Google Scholar] [CrossRef]
- Alexakis, A.; Biferale, L. Cascades and transitions in turbulent flows. Phys. Rep. 2018, 767, 1–101. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536. [Google Scholar] [CrossRef]
- Carr, B.; Kühnel, F.; Sandstad, M. Primordial black holes as dark matter. Phys. Rev. D 2016, 94, 083504. [Google Scholar] [CrossRef]
- Hawking, S.W.; Moss, I.G.; Stewart, J.M. Bubble collisions in the very early universe. Phys. Rev. D 1982, 26, 2681–2693. [Google Scholar] [CrossRef]
- Hawking, S. Particle creation by black-holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Clough, K.; Niemeyer, J.C. On the difficulty of generating gravitational wave turbulence in the early universe. Class. Quant. Grav. 2018, 35, 187001. [Google Scholar] [CrossRef] [Green Version]
- Peter, P.; Uzan, J.P. Primordial Cosmology; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Isaacson, R.A. Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Effective Stress Tensor. Phys. Rev. 1968, 166, 1272–1279. [Google Scholar] [CrossRef]
- Fjørtoft, R. On the Changes in the Spectral Distribution of Kinetic Energy for Two-dimensional, Non-divergent Flow. Tellus 1953, 5, 225. [Google Scholar] [CrossRef]
- Newell, A.C.; Nazarenko, S.; Biven, L. Wave turbulence and intermittency. Phys. D Nonlinear Phenom. 2001, 152–153, 520–550. [Google Scholar] [CrossRef] [Green Version]
- Galtier, S.; Nazarenko, S.V.; Buchlin, E.; Thalabard, S. Nonlinear diffusion models for gravitational wave turbulence. Phys. D Nonlinear Phenom. 2019, 390, 84–88. [Google Scholar] [CrossRef]
- Nazarenko, S.V. Wave Turbulence. In Lecture Notes in Physics; Springer: Berlin, Germany, 2011; Volume 825. [Google Scholar]
- Maggiore, M. Gravitational Waves; Oxford University Press: Oxford, UK, 2008; Volume 1. [Google Scholar]
- Dyachenko, S.; Newell, A.C.; Pushkarev, A.; Zakharov, V.E. Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Phys. D Nonlinear Phenom. 1992, 57, 96–160. [Google Scholar] [CrossRef]
- Galtier, S.; Nazarenko, S.V.; Newell, A.C.; Pouquet, A. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 2000, 63, 447–488. [Google Scholar] [CrossRef] [Green Version]
- Lacaze, R.; Lallemand, P.; Pomeau, Y.; Rica, S. Dynamical formation of a Bose-Einstein condensate. Phys. D Nonlinear Phenom. 2001, 152, 779–786. [Google Scholar] [CrossRef]
- Semikoz, D.V.; Tkachev, I.I. Kinetics of Bose Condensation. Phys. Rev. Lett. 1995, 74, 3093–3097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Yu, M. Generalized nonlinear Schrödinger equation as a model for turbulence, collapse, and inverse cascade. Phys. Rev. E 2011, 83, 036405. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.; Vladimirova, N.; Falkovich, G. Oscillations in a turbulence-condensate system. Phys. Rev. E 2013, 87, 065202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, M.; Billam, T.; Anderson, B.; Bradley, A. Inverse Energy Cascade in Forced Two-Dimensional Quantum Turbulence. Phys. Rev. Lett. 2013, 110, 104501. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, V.; Nazarenko, S. Dynamics of the Bose-Einstein condensation. Phys. D Nonlinear Phenom. 2005, 201, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Dodelson, S.; Gates, E.; Turner, M. Cold Dark Matter. Science 1996, 274, 69–75. [Google Scholar] [CrossRef]
- Semikoz, D.V.; Tkachev, I.I. Condensation of bosons in the kinetic regime. Phys. Rev. D 1997, 55, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Connaughton, C.; Nazarenko, S. Warm Cascades and Anomalous Scaling in a Diffusion Model of Turbulence. Phys. Rev. Lett. 2004, 92, 044501. [Google Scholar] [CrossRef] [PubMed]
- Thalabard, S.; Nazarenko, S.; Galtier, S.; Medvedev, S. Anomalous spectral laws in differential models of turbulence. J. Phys. A Math. Theor. 2015, 48, 285501. [Google Scholar] [CrossRef] [Green Version]
- Boyle, L.; Steinhardt, P.; Turok, N. Inflationary Predictions for Scalar and Tensor Fluctuations Reconsidered. Phys. Rev. Lett. 2006, 96, 111301. [Google Scholar] [CrossRef]
- Nazarenko, S.; Onorato, M. Wave turbulence and vortices in Bose Einstein condensation. Phys. D Nonlinear Phenom. 2006, 219, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nazarenko, S.; Onorato, M. Freely decaying Turbulence and Bose–Einstein Condensation in Gross–Pitaevski Model. J. Low Temp. Phys. 2007, 146, 31–46. [Google Scholar] [CrossRef]
- Antoniadis, I.; Mazur, P.O.; Mottola, E. Conformal invariance, dark energy, and CMB non-gaussianity. J. Cosmol. Astropart. Phys. 2012, 2012, 024. [Google Scholar] [CrossRef]
- Polyakov, A.M. The theory of turbulence in two dimensions. Nuclear Phys. B 1993, 396, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Frisch, U. Turbulence; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Chevalier, C.; Debbasch, F.; Ollivier, Y. Multiscale cosmological dynamics. Phys. A Statis. Mech. Appl. 2009, 388, 5029–5035. [Google Scholar] [CrossRef] [Green Version]
- Belinski, V.A.; Vereshchagin, G.V. On the cosmological gravitational waves and cosmological distances. Phys. Lett. B 2018, 778, 332–338. [Google Scholar] [CrossRef]
- Lifshitz, E. On the Gravitational Stability of the Expanding Universe. J. Phys. (USSR) 1946, 10, 116. [Google Scholar]
- Grishchuk, L. Amplification of Gravitational Waves in an Isotropic Universe. JETP 1974, 40, 409. [Google Scholar]
- Guzzetti, M.; Bartolo, N.; Liguori, M.; Matarrese, S. Gravitational Waves From Inflation. Rivista Del Nuovo Cimento 2016, 39, 339. [Google Scholar]
1. | One should not be confused with the reference to quantum mechanics, which is made purely for a simple illustration of the relation between the energy and the wave action spectra. The system we are considering is purely classical, in a sense that the occupation numbers at all the momentum states are large. It would be possible to extend our consideration to the cases of small or moderate occupation numbers via writing a quantum kinetic equation based on, e.g., the Fermi golden rule. However, these cases can only be relevant to the direct cascade at very high k which is beyond the scope of the present paper. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galtier, S.; Laurie, J.; Nazarenko, S.V. A Plausible Model of Inflation Driven by Strong Gravitational Wave Turbulence. Universe 2020, 6, 98. https://doi.org/10.3390/universe6070098
Galtier S, Laurie J, Nazarenko SV. A Plausible Model of Inflation Driven by Strong Gravitational Wave Turbulence. Universe. 2020; 6(7):98. https://doi.org/10.3390/universe6070098
Chicago/Turabian StyleGaltier, Sébastien, Jason Laurie, and Sergey V. Nazarenko. 2020. "A Plausible Model of Inflation Driven by Strong Gravitational Wave Turbulence" Universe 6, no. 7: 98. https://doi.org/10.3390/universe6070098
APA StyleGaltier, S., Laurie, J., & Nazarenko, S. V. (2020). A Plausible Model of Inflation Driven by Strong Gravitational Wave Turbulence. Universe, 6(7), 98. https://doi.org/10.3390/universe6070098