Can a Chameleon Field Be Identified with Quintessence?
Abstract
:1. Introduction
2. Einstein’s Equations in the Einstein–Cartan Gravitational Theory with Chameleon and Matter Fields
Derivation of Equation (5)
3. Friedmann–Einstein Equations of the Universe’s Evolution
3.1. Bianchi Identity, Conservation of Total Energy–Momentum Tensor and Conformal Factor
3.2. The Friedmann–Einstein (Equation Equation (28)) as the First Integral of the Friedmann–Einstein Equation (Equation (29))
4. Torsion–Neutron Low-Energy Interactions
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Mota, D.F.; Shaw, D.J. Evading equivalence principle violations, cosmological, and other experimental constraints in scalar field theories with a strong coupling to matter. Phys. Rev. D 2007, 75, 063501. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Peebles, P.J.E.; Vilenkin, A. Quintessential inflation. Phys. Rev. D 1999, 59, 063505. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef] [Green Version]
- Steinhardt, P.J. Quintessence and cosmic acceleration. NATO Sci. Ser. C 2001, 565, 143. [Google Scholar]
- Steinhardt, P.J. The quintessential Universe. AIP Conf. Proc. 2001, 586, 279. [Google Scholar]
- Steinhardt, P.J. A quintessential introduction to dark energy. Philos. Trans. R. Soc. Lond. A 2003, 361, 2497. [Google Scholar] [CrossRef] [Green Version]
- Tsujikawa, S. Quintessence: A review. Class. Quantum Gravity 2013, 30, 21400. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Deustua, S.; Fabbro, S.; Goldhaber, G.; Groom, D.E.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Nugent, P.; et al. Cosmology from type Ia supernovae. Bull. Am. Astron. Soc. 1997, 29, 1351. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astron. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Goobar, A.; Perlmutter, S.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Groom, D.E.; Hook, I.M.; et al. The acceleration of the universe: Measurements of cosmological parameters from type Ia supernovae. Phys. Scr. T 2000, 85, 47. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; van de Bruck, C.; Davis, A.C.; Khoury, J.; Weltman, A. Detecting dark energy in orbit: The cosmological chameleon. Phys. Rev. D 2004, 70, 123518. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef] [Green Version]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and the accelerating Universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385. [Google Scholar] [CrossRef] [Green Version]
- Jain, B.; Joyce, A.; Thompson, R.; Upadhye, A.; Battat, J.; Brax, P.; Davis, A.; de Rham, C.; Dodelson, S.; Erickcek, A.; et al. Novel probes of gravity and dark energy. arXiv 2013, arXiv:1309.5389. [Google Scholar]
- Brax, P.; Davis, A.-C. Casimir, gravitational, and neutron tests of dark energy. Phys. Rev. D 2015, 91, 063503. [Google Scholar] [CrossRef] [Green Version]
- Pignol, G. Probing dark energy models with neutrons. Int. J. Mod. Phys. A 2015, 30, 1530048. [Google Scholar] [CrossRef] [Green Version]
- Cartan, É. Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. C. R. Acad. Sci. 1922, 174, 593. [Google Scholar]
- Cartan, É. Sur les variétés à connexion affine et la relativité généralisée (prémière partie). Ann. Ec. Norm. 1923, 40, 325. [Google Scholar] [CrossRef]
- Cartan, É. Sur les variétés à connexion affine et la relativité généralisée (prémière partie). Ann. Ec. Norm. 1924, 41, 1. [Google Scholar] [CrossRef] [Green Version]
- Cartan, É. Sur les variétés à connexion affine et la relativité généralisée (deuxième partie). Ann. Ec. Norm. 1925, 42, 17. [Google Scholar] [CrossRef] [Green Version]
- Cartan, É.; Einstein, A. Letters of Absolute Parallelism; Princeton University Press: Princeton, NJ, USA, 1975. [Google Scholar]
- Schrödinger, E. Space-Time Structure; Cambridge at the University Press: Cambridge, UK, 1950. [Google Scholar]
- Hehl, F.W.; Kerlick, G.D.; van der Heyde, P. General relativity with spin and torsion and its deviations from Einstein’s theory. Phys. Rev. D 1974, 10, 1066–1069. [Google Scholar] [CrossRef]
- Hehl, F.W.; van der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Obukhov, Y.N. Elie Cartan’s torsion in geometry and in field theory, an essay. Ann. Fond. Louis Broglie 2007, 32, 157–194. [Google Scholar]
- Hehl, F.W. Gauge Theories of Gravity and Spacetime. arXiv 2012, arXiv:1204.3672v2. [Google Scholar]
- Blagojević, M.; Hehl, F.W. (Eds.) Gauge Theories of Gravitation: A Reader with Commentaries; Imperial College Press: London, UK, 2013. [Google Scholar]
- Hehl, F.W.; Obukhov, Y.N. Conservation of energy-momentum of matter as the basis for the gauge theory of gravitation. arXiv 2019, arXiv:1909.01791. [Google Scholar]
- Obukhov, Y.N.; Hehl, F.W. General relativity as a special case of Poincaré gauge gravity. Phys. Rev. D 2020, 102, 044058. [Google Scholar] [CrossRef]
- Shapiro, I.L. Physical aspects of the space-time torsion. Phys. Rep. 2002, 357, 113–213. [Google Scholar] [CrossRef] [Green Version]
- Hammond, R.T. Torsion gravity. Rep. Prog. Phys. 2002, 65, 599–649. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.-T. Reports on Progress in Physics Searches for the role of spin and polarization in gravity. Rep. Prog. Phys. 2010, 73, 056901. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Wellenzohn, M. Einstein–Cartan gravity with torsion field serving as an origin for the cosmological constant or dark energy density. Astrophys. J. 2016, 829, 47. [Google Scholar] [CrossRef]
- Ivanov, A.N.; Wellenzohn, M. Nonrelativistic approximation of the Dirac equation for slow fermions coupled to the chameleon and torsion fields in the gravitational field of the Earth. Phys. Rev. D 2015, 92, 065006. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Wellenzohn, M. Effective low-energy potential for slow Dirac fermions in Einstein-Cartan Gravity with torsion and chameleon field. Phys. Rev. D 2015, 92, 125004. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Wellenzohn, M. Spin precession of slow neutrons in Einstein-Cartan gravity with torsion, chameleon, and magnetic field. Phys. Rev. D 2016, 93, 045031. [Google Scholar] [CrossRef] [Green Version]
- Lämmerzahl, C. Constraints on space-time torsion from Hughes-Drever experiments. Phys. Lett. A 1997, 228, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Russell, N.; Tasson, J.D. Constraints on torsion from bounds on Lorentz violation. Phys. Rev. Lett. 2008, 100, 111102. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Silenko, A.J.; Teryaev, O.V. Spin-torsion coupling and gravitational moments of Dirac fermions: Theory and experimental bounds. Phys. Rev. D 2014, 90, 124068. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, R.; Snow, W.M.; Yan, H. A first experimental limit on in-matter torsion from neutron spin rotation in liquid 4He4. Phys. Lett. B 2014, 730, 353–356, Erratum in 2015, 744, 415. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Snow, W.M. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion. Phys. Lett. B 2017, 764, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N. Presented at the Workshop Dark Energy in the Laboratory, Chicheley Hall, UK, 20–22 April 2016.
- Abele, H.; Jenke, T.; Leeb, H.; Schmiedmayer, J. Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts. Phys. Rev. D 2010, 81, 065019. [Google Scholar] [CrossRef] [Green Version]
- Jenke, T.; Geltenbort, P.; Lemmel, H.; Abele, H. Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 2011, 7, 468–472. [Google Scholar] [CrossRef]
- Abele, H.; Jenke, T.; Stadler, D.; Geltenbort, P. QuBounce: The dynamics of ultra-cold neutrons falling in the gravity potential of the Earth. Nucl. Phys. A 2009, 827, 593c–595c. [Google Scholar] [CrossRef]
- Jenke, T.; Stadler, D.; Abele, H.; Geltenbort, P. Q-BOUNCE—Experiments with quantum bouncing ultracold neutrons. In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment; Particle Physics with Slow Neutrons; Elsevier: Amsterdam, The Netherlands, 2009; Volume 611, pp. 318–321. [Google Scholar]
- Abele, H.; Leeb, H. Gravitation and quantum interference experiments with neutrons. New J. Phys. 2012, 14, 055010. [Google Scholar] [CrossRef]
- Jenke, T.; Cronenberg, G.; Bürgdorfer, J.; Chizhova, L.A.; Geltenbort, P.; Ivanov, A.N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; et al. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 2014, 112, 151105. [Google Scholar] [CrossRef] [Green Version]
- Cronenberg, G.; Brax, P.; Filter, H.; Geltenbort, P.; Jenke, T.; Pignol, G.; Pitschmann, M.; Thalhammer, M.; Abele, H. Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy. Nat. Phys. 2018, 14, 1022–1026. [Google Scholar] [CrossRef]
- Lemmel, H.; Brax, P.; Ivanov, A.N.; Jenke, T.; Pignol, G.; Pitschmann, M.; Potocar, T.; Wellenzohn, M.; Zawisky, M.; Abele, H. Neutron interferometry constrains dark energy chameleon fields. Phys. Lett. B 2015, 743, 310–314. [Google Scholar] [CrossRef]
- Li, K.; Arif, M.; Cory, D.G.; Haun, R.; Heacock, B.; Huber, M.G.; Nsofini, J.; Pushin, D.A.; Saggu, P.; Sarenac, D.; et al. Neutron limit on the strongly-coupled chameleon field. Phys. Rev. D 2016, 93, 062001. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Pignol, G. Strongly coupled chameleons and the neutronic quantum bouncer. Phys. Rev. Lett. 2011, 107, 111301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, A.N.; Höllwieser, R.; Jenke, T.; Wellenzohn, M.; Abele, H. Influence of the chameleon field potential on transition frequencies of gravitationally bound quantum states of ultracold neutrons. Phys. Rev. D 2013, 87, 105013. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Cronenberg, G.; Höllwieser, R.; Jenke, T.; Pitschmann, M.; Wellenzohn, M.; Abele, H. Exact solution for chameleon field, self-coupled through the Ratra-Peebles potential with n = 1 and confined between two parallel plates. Phys. Rev. D 2016, 94, 085005. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Pitschmann, M. Nonrelativistic approximation of the Dirac equation for slow fermions in static metric spacetimes. Phys. Rev. D 2014, 90, 045040. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Copeland, E.J.; Hinds, E.A. Probing dark energy with atom interferometry. JCAP 2015, 2015, 42. [Google Scholar] [CrossRef]
- Burrage, C.; Copeland, E.J. Using atom interferometry to detect dark energy. Contemp. Phys. 2016, 57, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.; Jaffe, M.; Haslinger, P.; Simmons, Q.; Müller, H.; Khoury, J. Atom-interferometry constraints on dark energy. Science 2015, 349, 849–851. [Google Scholar] [CrossRef] [Green Version]
- Elder, B.; Khoury, J.; Haslinger, P.; Jaffe, M.; Müller, H.; Hamilton, P. Chameleon dark energy and atom interferometry. Phys. Rev. D 2016, 94, 044051. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Sakstein, J. Tests of chameleon gravity. Living Rev. Relat. 2018, 21, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hui, L.; Khoury, J. No-go theorems for generalized chameleon field theories. Phys. Rev. Lett. 2012, 109, 241301. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J. Chameleon field theories. Class. Quantum Gravity 2013, 30, 214004. [Google Scholar] [CrossRef] [Green Version]
- Rebhan, E. Theoretische Physik: Relativitätstheorie und Kosmologie; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Evolution of the cosmological constant. Nature 1999, 398, 25. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212. [Google Scholar] [CrossRef] [Green Version]
- Utiyama, R. Invariant theoretical interpretation of interaction. Phys. Rev. 1956, 101, 1597. [Google Scholar] [CrossRef]
- Sciama, D.W. On the interpretation of the Einstein-Schrodinger unified field theory. J. Math. Phys. 1961, 2, 472. [Google Scholar] [CrossRef]
- Sciama, D.W. The physical structure of general relativity. Rev. Mod. Phys. 1964, 36, 463–469. [Google Scholar] [CrossRef]
- Blagojević, M. Gravitation and Gauge Symmetries; Series in High–Energy Physics, Cosmology and Gravitation; Foster, B., Grishchuk, L., Kolb, E.W., MacCallum, M.A.H., Perkins, D.H., Schutz, B.F., Eds.; Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 2001. [Google Scholar]
- Davis, A.-C.; Schelpe, C.A.O.; Shaw, D.J. Effect of a chameleon scalar field on the cosmic microwave background. Phys. Rev. D 2009, 80, 064016. [Google Scholar] [CrossRef] [Green Version]
- Baum, S.; Cantatore, G.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K. Detecting solar chameleons through radiation pressure. Phys. Lett. B 2014, 739, 167–173. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s principle and invariance under transformation of units. Phys. Rev. 1962, 125, 2163. [Google Scholar] [CrossRef]
- Ivanov, A.N.; Wellenzohn, M. Standard electroweak interactions in gravitational theory with chameleon field and torsion. Phys. Rev. D 2015, 91, 085025. [Google Scholar] [CrossRef] [Green Version]
- Tomas, L.H. The radiation field in a fluid in motion. Q. J. Math. 1930, 1, 239. [Google Scholar] [CrossRef]
- Weinberg, S. Entropy generation and the survival of photo-galaxies in an expanding Universe. Astrophys. J. 1971, 168, 175. [Google Scholar] [CrossRef]
- Straumann, N. On radiative fluids. Helv. Phys. Acta 1976, 49, 269. [Google Scholar]
- Schweizer, M.A. Transient and transport coefficients for radiative fluids. Astrophys. J. 1982, 258, 798–811. [Google Scholar] [CrossRef]
- Schweizer, M.A. Relativistic radiative hydrodynamics. Ann. Phys. 1988, 183, 80. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Turok, N. Cosmic evolution in a cyclic universe. Phys. Rev. D 2002, 65, 126003. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Mizuno, S.; Shaeri, M. Dynamics of a scalar field in Robertson-Walker spacetimes. Phys. Rev. D 2009, 79, 103515. [Google Scholar] [CrossRef] [Green Version]
- Foldy, L.L.; Wouthuysen, S.A. On the Dirac theory of spin 1/2 particle and its nonrelativistic limit. Phys. Rev. 1950, 78, 29. [Google Scholar] [CrossRef]
- Itzykson, C.; Zuber, J.-B. Quantum Field Theory; McGraw-Hill Inc.: New York, NY, USA, 1980. [Google Scholar]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Clock-comparison tests of Lorentz and CPT symmetry in space. Phys. Rev. Lett. 2002, 88, 090801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostelecký, V.A.; Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D 2002, 66, 056005. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Probing Lorentz and CPT violation with space-based experiments. Phys. Rev. D 2003, 68, 125008. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Kostelecký, V.A. Lorentz-violating spinor electrodynamics and Penning traps. Phys. Rev. D 2016, 94, 056008. [Google Scholar] [CrossRef] [Green Version]
- GPS Coordinates of Grenoble. Available online: https://latitude.to/map/fr/france/cities/grenoble (accessed on 26 November 2020).
- Ivanov, A.N.; Wellenzohn, M.; Abele, H. Probing of violation of Lorentz invariance by ultracold neutrons in the Standard Model Extension. Phys. Lett. B 2019, 797, 134819. [Google Scholar] [CrossRef]
- Jain, B.; Vikram, V.; Sakstein, J. Astrophysical tests of modified gravity: Constraints from distance indicators in the nearby Universe. Astrophys. J. 2013, 779, 39. [Google Scholar] [CrossRef] [Green Version]
- Hinterbichler, K.; Khoury, J. Symmetron fields: Screening Long-range forces through local symmetry restoration. Phys. Rev. Lett. 2010, 104, 231301. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Polyakov, A.M. The string dilation and a least coupling principle. Nucl. Phys. B 1994, 423, 532–558. [Google Scholar] [CrossRef] [Green Version]
- Gasperini, M.; Piazza, F.; Veneziano, G. Quintessence as a runaway dilaton. Phys. Rev. D 2001, 65, 023508. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Piazza, F.; Veneziano, G. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D 2002, 66, 046007. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Piazza, F.; Veneziano, G. Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 2002, 89, 081601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, Y. Mass of the dilaton and the cosmological constant. Prog. Theor. Phys. 2003, 110, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Gasperini, M. Dilaton cosmology and phenomenology. Lect. Notes Phys. 2008, 737, 787–844. [Google Scholar]
- Guendelman, E.I.; Kaganovich, A.B. Absence of the fifth force problem in a model with spontaneously broken dilatation symmetry. Ann. Phys. 2008, 323, 866–882. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; van de Bruck, C.; Davis, A.-C. The dilaton and modified gravity. Phys. Rev. D 2010, 82, 063519. [Google Scholar] [CrossRef] [Green Version]
- Saa, A. Einstein-Cartan theory of gravity revisited. arXiv 1993, arXiv:9309027. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.N.; Wellenzohn, M. Can a Chameleon Field Be Identified with Quintessence? Universe 2020, 6, 221. https://doi.org/10.3390/universe6120221
Ivanov AN, Wellenzohn M. Can a Chameleon Field Be Identified with Quintessence? Universe. 2020; 6(12):221. https://doi.org/10.3390/universe6120221
Chicago/Turabian StyleIvanov, A. N., and M. Wellenzohn. 2020. "Can a Chameleon Field Be Identified with Quintessence?" Universe 6, no. 12: 221. https://doi.org/10.3390/universe6120221
APA StyleIvanov, A. N., & Wellenzohn, M. (2020). Can a Chameleon Field Be Identified with Quintessence? Universe, 6(12), 221. https://doi.org/10.3390/universe6120221