BCS-BEC Crossover Effects and Pseudogap in Neutron Matter
Abstract
:1. Introduction
2. T-Matrix Formalism
2.1. Vertex Function
2.2. Numerical Solution for a Non-Separable Interaction
2.3. Vertex Function with a Separable Interaction
2.4. Self-Energy
2.5. Occupation Numbers
3. Numerical Results
3.1. Critical Temperature as a Function of the Chemical Potential
3.2. Spectral Function and Pseudogap
3.3. Occupation Numbers
3.4. Correlated Density
3.5. Density Dependence of the Critical Temperature
4. Open Questions
4.1. Problem of the Subtraction
4.2. Effect of the Quasiparticle Weight
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chamel, N.; Haensel, P. Physics of Neutron Star Crusts. Living Rev. Relativ. 2008, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, T.; Seki, R. Lattice calculation of thermal properties of low-density neutron matter with pionless NN effective field theory. Phys. Rev. C 2009, 79, 054002. [Google Scholar] [CrossRef] [Green Version]
- Gezerlis, A.; Carlson, J. Low-density neutron matter. Phys. Rev. C 2010, 81, 025803. [Google Scholar] [CrossRef] [Green Version]
- Okihashi, T.; Matsuo, M. Proximity effect of pair correlation in the inner crust of neutron stars. arXiv 2020, arXiv:2009.11505. [Google Scholar]
- Chamel, N.; Goriely, S.; Pearson, J.M.; Onsi, M. Unified description of neutron superfluidity in the neutron-star crust with analogy to anisotropic multiband BCS superconductors. Phys. Rev. C 2010, 81, 045804. [Google Scholar] [CrossRef] [Green Version]
- González Trotter, D.E.; Salinas, F.; Chen, Q.; Crowell, A.S.; Glöckle, W.; Howell, C.R.; Roper, C.D.; Schmidt, D.; Šlaus, I.; Tang, H.; et al. New Measurement of the 1S0 Neutron-Neutron Scattering Length Using the Neutron-Proton Scattering Length as a Standard. Phys. Rev. Lett. 1999, 83, 3788–3791. [Google Scholar] [CrossRef] [Green Version]
- Babenko, V.; Petrov, N. Low-energy parameters of neutron-neutron interaction in the effective-range approximation. Phys. Atom. Nucl. 2013, 76, 684–689. [Google Scholar] [CrossRef]
- Baker, G.A. Neutron matter model. Phys. Rev. C 1999, 60, 054311. [Google Scholar] [CrossRef]
- Calvanese Strinati, G.; Pieri, P.; Röpke, G.; Schuck, P.; Urban, M. The BCS–BEC crossover: From ultra-cold Fermi gases to nuclear systems. Phys. Rep. 2018, 738, 1–76. [Google Scholar] [CrossRef] [Green Version]
- Nozières, P.; Schmitt-Rink, S. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity. J. Low Temp. Phys. 1985, 59, 195–211. [Google Scholar] [CrossRef]
- Baldo, M.; Lombardo, U.; Schuck, P. Deuteron formation in expanding nuclear matter from a strong coupling BCS approach. Phys. Rev. C 1995, 52, 975–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Röpke, G.; Schulz, H. Generalized beth-uhlenbeck approach for hot nuclear matter. Ann. Phys. 1990, 202, 57–99. [Google Scholar] [CrossRef]
- Stein, H.; Schnell, A.; Alm, T.; Röpke, G. Correlations and pairing in nuclear matter within the Nozières-Schmitt-Rink approach. Z. Phys. A Hadron. Nucl. 1995, 351, 295–299. [Google Scholar] [CrossRef]
- Jin, M.; Urban, M.; Schuck, P. BEC-BCS crossover and the liquid-gas phase transition in hot and dense nuclear matter. Phys. Rev. C 2010, 82, 024911. [Google Scholar] [CrossRef]
- Matsuo, M. Spatial structure of neutron Cooper pair in low density uniform matter. Phys. Rev. C 2006, 73, 044309. [Google Scholar] [CrossRef] [Green Version]
- Ramanan, S.; Urban, M. BEC-BCS crossover in neutron matter with renormalization-group-based effective interactions. Phys. Rev. C 2013, 88, 054315. [Google Scholar] [CrossRef] [Green Version]
- Ramanan, S.; Urban, M. Screening and antiscreening of the pairing interaction in low-density neutron matter. Phys. Rev. C 2018, 98, 024314. [Google Scholar] [CrossRef] [Green Version]
- Tajima, H.; Hatsuda, T.; van Wyk, P.; Ohashi, Y. Superfluid Phase Transitions and Effects of Thermal Pairing Fluctuations in Asymmetric Nuclear Matter. Sci. Rep. 2019, 9, 18477. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.; Ramanan, S. Neutron pairing with medium polarization beyond the Landau approximation. Phys. Rev. C 2020, 101, 035803. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, Y.; Tajima, H.; van Wyk, P. BCS-BEC crossover in cold atomic and in nuclear systems. Prog. Part. Nucl. Phys. 2020, 111, 103739. [Google Scholar] [CrossRef]
- Inotani, D.; Yasui, S.; Nitta, M. Strong-coupling effects of pairing fluctuations and Anderson-Bogoliubov and Higgs modes in neutron 1S0 superfluids in neutron stars. arXiv 2019, arXiv:1912.12420. [Google Scholar]
- Sá de Melo, C.A.R.; Randeria, M.; Engelbrecht, J.R. Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg-Landau theory. Phys. Rev. Lett. 1993, 71, 3202–3205. [Google Scholar] [CrossRef] [PubMed]
- Bogner, S.; Furnstahl, R.; Schwenk, A. From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 2010, 65, 94–147. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.W.; Kaiser, N.; Weise, W. Density-dependent effective nucleon-nucleon interaction from chiral three-nucleon forces. Phys. Rev. C 2010, 81, 024002. [Google Scholar] [CrossRef] [Green Version]
- Fetter, A.L.; Walecka, J.D. Quantum Theory of Many-Particle Systems; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Weinberg, S. Quasiparticles and the Born series. Phys. Rev. 1963, 131, 440–460. [Google Scholar] [CrossRef]
- Törnig, W.; Spellucci, P. Numerische Mathematik für Ingenieure und Physiker; Springer: Berlin, Germany, 1990. [Google Scholar]
- Thouless, D.J. Perturbation theory in statistical mechanics and the theory of superconductivity. Ann. Phys. 1960, 10, 553–588. [Google Scholar] [CrossRef] [Green Version]
- Khodel, V.A.; Khodel, V.V.; Clark, J.W. Solution of the gap equation in neutron matter. Nucl. Phys. A 1996, 598, 390–417. [Google Scholar] [CrossRef]
- Martin, N.; Urban, M. Collective modes in a superfluid neutron gas within the quasiparticle random-phase approximation. Phys. Rev. C 2014, 90, 065805. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, R.; Stolz, H. The Mass Action Law in Two-Component Fermi Systems Revisited Excitons and Electron-Hole Pairs. Phys. Status Solidi B 1985, 131, 151–164. [Google Scholar] [CrossRef]
- Haussmann, R.; Rantner, W.; Cerrito, S.; Zwerger, W. Thermodynamics of the BCS-BEC crossover. Phys. Rev. A 2007, 75, 023610. [Google Scholar] [CrossRef] [Green Version]
- Buraczynski, M.; Ismail, N.; Gezerlis, A. Nonperturbative Extraction of the Effective Mass in Neutron Matter. Phys. Rev. Lett. 2019, 122, 152701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnell, A.; Röpke, G.; Schuck, P. Precritical Pair Fluctuations and Formation of a Pseudogap in Low-Density Nuclear Matter. Phys. Rev. Lett. 1999, 83, 1926–1929. [Google Scholar] [CrossRef] [Green Version]
- Gaebler, J.P.; Stewart, J.T.; Drake, T.E.; Jin, D.S.; Perali, A.; Pieri, P.; Strinati, G.C. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 2010, 6, 573–659. [Google Scholar] [CrossRef]
- Jensen, S.; Gilbreth, C.; Alhassid, Y. The pseudogap regime in the unitary Fermi gas. Eur. Phys. J. ST 2019, 227, 2241–2261. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.; Gilbreth, C.N.; Alhassid, Y. Pairing Correlations across the Superfluid Phase Transition in the Unitary Fermi Gas. Phys. Rev. Lett. 2020, 124, 090604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimbène, S.; Navon, N.; Jiang, K.J.; Chevy, F.; Salomon, C. Exploring the thermodynamics of a universal Fermi gas. Nature 2010, 463, 1057–1060. [Google Scholar] [CrossRef] [Green Version]
- Ku, M.J.H.; Sommer, A.T.; Cheuk, L.W.; Zwierlein, M.W. Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas. Science 2012, 335, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Pisani, L.; Perali, A.; Pieri, P.; Strinati, G.C. Entanglement between pairing and screening in the Gorkov-Melik-Barkhudarov correction to the critical temperature throughout the BCS-BEC crossover. Phys. Rev. B 2018, 97, 014528. [Google Scholar] [CrossRef] [Green Version]
- Pantel, P.A.; Davesne, D.; Urban, M. Polarized Fermi gases at finite temperature in the BCS-BEC crossover. Phys. Rev. A 2014, 90, 053629, Erratum ibid. 2016, 94, 019901. [Google Scholar] [CrossRef] [Green Version]
- Perali, A.; Pieri, P.; Strinati, G.C.; Castellani, C. Pseudogap and spectral function from superconducting fluctuations to the bosonic limit. Phys. Rev. B 2002, 66, 024510. [Google Scholar] [CrossRef] [Green Version]
- Pieri, P.; Pisani, L.; Strinati, G.C. BCS-BEC crossover at finite temperature in the broken-symmetry phase. Phys. Rev. B 2004, 70, 094508. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.G.; Lombardo, U.; Schuck, P. Screening effects in superfluid nuclear and neutron matter within Brueckner theory. Phys. Rev. C 2006, 74, 064301. [Google Scholar] [CrossRef]
- Schuck, P.; Delion, D.S.; Dukelsky, J.; Jemai, M.; Litvinova, E.; Röpke, G.; Tohyama, M. Equation of Motion Method to strongly correlated Fermi systems and Extended RPA approaches. arXiv 2020, arXiv:2009.00591. [Google Scholar]
- Durel, D.; Urban, M. Application of the renormalized random-phase approximation to polarized Fermi gases. Phys. Rev. A 2020, 101, 013608. [Google Scholar] [CrossRef] [Green Version]
interaction | ||
unitary limit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durel, D.; Urban, M. BCS-BEC Crossover Effects and Pseudogap in Neutron Matter. Universe 2020, 6, 208. https://doi.org/10.3390/universe6110208
Durel D, Urban M. BCS-BEC Crossover Effects and Pseudogap in Neutron Matter. Universe. 2020; 6(11):208. https://doi.org/10.3390/universe6110208
Chicago/Turabian StyleDurel, David, and Michael Urban. 2020. "BCS-BEC Crossover Effects and Pseudogap in Neutron Matter" Universe 6, no. 11: 208. https://doi.org/10.3390/universe6110208
APA StyleDurel, D., & Urban, M. (2020). BCS-BEC Crossover Effects and Pseudogap in Neutron Matter. Universe, 6(11), 208. https://doi.org/10.3390/universe6110208