Using Unreal Engine to Visualize a Cosmological Volume
Abstract
:1. Introduction
2. Assets
2.1. Galaxy Catalog
2.2. Galaxy Imagery
3. Unreal Engine
4. Results
5. Discussion and Conclusions
- Dark Matter Viewer. The conspicuous absence of Dark Matter in Astera would be remedied by a view mode that would show the dark matter substructure.
- Time Evolution. An exciting option which would essentially integrate Astera with a semi-analytic model, the motions and evolution of galaxies would be visible in (accelerated) real time. The user would be able to, at the press of a button, watch the universe evolve in front of them. This would dramatically increase the strain on the hardware to perform this on real time, so the volume of this universe might be limited.
- Gravitational Lensing. An ambitious proposal, where the weak gravitational lensing of large clusters could be visually shown. Obviously solving the full equations from General Relativity would not be viable, but it might be possible to develop a ‘’lens’’ object that acts as a close approximation.
- Gamification. As previously mentioned, Astera is a potentially invaluable outreach tool for increasing public awareness of the large scale universe. Gamifing Astera by introducing elements that make exploring the cosmological volume fun and educational could increase this value even further.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CDM | Cold Dark Matter |
HMSM | Halo Mass-Stellar Mass (relation) |
AGN | Active Galactic Nucleus/Nuclei |
SDSS | Sloan Digital Sky Survey |
HST | Hubble Space Telescope |
NFW | Navarro–Frenk–White (profile) |
GUI | Grapical User Interface |
RBG | Red, Green, Blue |
GIMP | GNU Image Manipulator Program |
FPS | Frames Per Second |
CPU | Central Processing Unit |
GPU | Graphics Processing Unit |
UE4 | Unreal Engine 4 |
References
- Zel’Dovich, Y.B. Reprint of 1970A&A.....5...84Z. Gravitational instability: An approximate theory for large density perturbations. Astron. Astrophys. 1970, 500, 13–18. [Google Scholar]
- Peebles, P.J.E. The Large-Scale Structure of the Universe; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Doroshkevich, A.G.; Shandarin, S.F. A statistical approach to the theory of galaxy formation. Sov. Astron. 1978, 22, 653–660. [Google Scholar]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Abel, T.; Hahn, O.; Kaehler, R. Tracing the dark matter sheet in phase space. Mon. Notice. R. Astron. Soc. 2012, 427, 61–76. [Google Scholar] [CrossRef]
- Klypin, A.A.; Shandarin, S.F. Three-dimensional numerical model of the formation of large-scale structure in the Universe. Mon. Not. R. Astron. Soc. 1983, 204, 891–907. [Google Scholar] [CrossRef]
- Springel, V.; Snape, J.; Moore, A. Milennium Movies. 2011. Available online: http://icc.dur.ac.uk/~ams/galform_movie/ (accessed on 3 September 2020).
- Klypin, A.; Primack, T.; Henze, C. Bolshoi Fly-Through. 2011. Available online: http://hipacc.ucsc.edu/Bolshoi/Movies.html (accessed on 4 August 2020).
- Illustris Collaboration. Time Evolution of a 10 Mpc (comoving) Region within Illustris. 2018. Available online: https://www.illustris-project.org/media/ (accessed on 4 August 2020).
- Aragon, M.; Subbarao, M.; Szalay, A. A Flight Through the Universe, by the Sloan Digital Sky Survey. 2012. Available online: https://www.youtube.com/watch?v=08LBltePDZw (accessed on 4 August 2020).
- Farris, J. Forging New Paths for Filmmakers on “The Mandalorian”. 2020. Available online: https://www.unrealengine.com/en-US/blog/forging-new-paths-for-filmmakers-on-the-mandalorian (accessed on 4 August 2020).
- Laurel, C. Celestia [Software Application]. 2001. Available online: https://celestia.space (accessed on 4 August 2020).
- Fay, J.; Wong, C. WorldWide Telescope. 2008. Available online: http://worldwidetelescope.org (accessed on 4 August 2020).
- Google. Google Sky. 2007. Available online: https://www.google.com/sky/ (accessed on 4 August 2020).
- Dixon, D.; Universe Sandbox 2 [Software Application]. Seattle: Giant Army LLC. 2017. Available online: http://universesandbox.com (accessed on 4 August 2020).
- Romanyuk, V.; Space Engine [Software Application]. Space Engine Developers. 2010. Available online: https://www.http://spaceengine.org/ (accessed on 4 August 2020).
- Klypin, A.A.; Trujillo-Gomez, S.; Primack, J. Dark Matter Halos in the Standard Cosmological Model: Results from the Bolshoi Simulation. Astrophys. J. 2011, 740, 102. [Google Scholar] [CrossRef] [Green Version]
- Klypin, A.; Yepes, G.; Gottlöber, S.; Prada, F.; Heß, S. MultiDark simulations: The story of dark matter halo concentrations and density profiles. Mon. Notice. R. Astron. Soc. 2016, 457, 4340–4359. [Google Scholar] [CrossRef]
- Grylls, P.J.; Shankar, F.; Zanisi, L.; Bernardi, M. A statistical semi-empirical model: Satellite galaxies in groups and clusters. Mon. Notice. R. Astron. Soc. 2019, 483, 2506–2523. [Google Scholar] [CrossRef] [Green Version]
- Grylls, P.J.; Shankar, F.; Leja, J.; Menci, N.; Moster, B.; Behroozi, P.; Zanisi, L. Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL STEEL. Month. Notice. Royal Astron. Soc. 2019, 2560. [Google Scholar] [CrossRef]
- Moster, B.P.; Somerville, R.S.; Maulbetsch, C.; van den Bosch, F.C.; Macciò, A.V.; Naab, T.; Oser, L. Constraints on the Relationship between Stellar Mass and Halo Mass at Low and High Redshift. Astrophys. J. 2010, 710, 903–923. [Google Scholar] [CrossRef] [Green Version]
- Blanton, M.R.; Bershady, M.A.; Abolfathi, B.; Albareti, F.D.; Allende Prieto, C.; Almeida, A.; Alonso-García, J.; Anders, F.; Anderson, S.F.; Andrews, B.; et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astrophys. J. 2017, 154, 28. [Google Scholar] [CrossRef]
- Prugniel, P.; Simien, F. The fundamental plane of early-type galaxies: Non-homology of the spatial structure. Astron. Astrophys. 1997, 321, 111–122. [Google Scholar]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef] [Green Version]
- Diemer, B.; Joyce, M. An Accurate Physical Model for Halo Concentrations. Astrophys. J. 2019, 871, 168. [Google Scholar] [CrossRef] [Green Version]
- Cappellari, M.; Romanowsky, A.J.; Brodie, J.P.; Forbes, D.A.; Strader, J.; Foster, C.; Kartha, S.S.; Pastorello, N.; Pota, V.; Spitler, L.R.; et al. Small Scatter and Nearly Isothermal Mass Profiles to Four Half-light Radii from Two-dimensional Stellar Dynamics of Early-type Galaxies. Astrophys. J. Lett. 2015, 804, L21. [Google Scholar] [CrossRef]
- Shankar, F.; Bernardi, M.; Sheth, R.K.; Ferrarese, L.; Graham, A.W.; Savorgnan, G.; Allevato, V.; Marconi, A.; Läsker, R.; Lapi, A. Selection bias in dynamically measured supermassive black hole samples: Its consequences and the quest for the most fundamental relation. Mon. Notice. R. Astron. Soc. 2016, 460, 3119–3142. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.; Yosinski, J.; Bengio, Y.; Dosovitskiy, A.; Clune, J. Plug & play generative networks: Conditional iterative generation of images in latent space. arXiv 2016, arXiv:1612.00005. [Google Scholar]
- Meert, A.; Vikram, V.; Bernardi, M. A catalogue of 2D photometric decompositions in the SDSS-DR7 spectroscopic main galaxy sample: Preferred models and systematics. Mon. Notice. R. Astron. Soc. 2014, 446, 3943–3974. [Google Scholar] [CrossRef] [Green Version]
- Christense, L.L.; Nielsen, L.H.; Nielsen, K.K.; Johansen, T. The ESA/ESO/NASA FITS Liberator 3 [Software Application]. 2019. Available online: https://www.spacetelescope.org/projects/fits_liberator/ (accessed on 4 August 2020).
- The GIMP Development Team. GNU Image Manipulation Program. 1996. Available online: https://www.gimp.org (accessed on 13 September 2018).
- Hopkins, P.F.; Hernquist, L. Quasars Are Not Light Bulbs: Testing Models of Quasar Lifetimes with The Observed Eddington Ratio Distribution. Astrophys. J. 2009, 698, 1550–1569. [Google Scholar] [CrossRef]
- Diemer, B.; Facio, I. The Fabric of the Universe: Exploring the Cosmic Web in 3D Prints and Woven Textiles. Public. Astron. Soc. Pac. 2017, 129, 058013. [Google Scholar] [CrossRef]
- De Lucia, G.; Fontanot, F.; Wilman, D. What determines the fraction of elliptical galaxies in clusters? Mon. Notice. R. Astron. Soc. 2011, 419, 1324–1330. [Google Scholar] [CrossRef]
- Bertin, E. SkyMaker: Astronomical image simulations made easy. Mem. Della Soc. Astron. Ital. 2009, 80, 422. [Google Scholar]
1. | Strictly speaking, these simulations adopt cosmologies that are slightly different to ours. However, for the purposes of this paper, they are sufficiently similar. |
2. | Due to the difficulty video streaming compression algorithms have with many small moving objects, it is recommended the reader download this video and play it locally. |
N | |||||
---|---|---|---|---|---|
Central, | 11.95 | 0.032 | 1.61 | 0.54 | 0.11 |
Total, | 11.89 | 0.031 | 1.77 | 0.52 | 0.10 |
Evolution, | 0.4 | −0.02 | −0.6 | −0.1 | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsden, C.; Shankar, F. Using Unreal Engine to Visualize a Cosmological Volume. Universe 2020, 6, 168. https://doi.org/10.3390/universe6100168
Marsden C, Shankar F. Using Unreal Engine to Visualize a Cosmological Volume. Universe. 2020; 6(10):168. https://doi.org/10.3390/universe6100168
Chicago/Turabian StyleMarsden, Christopher, and Francesco Shankar. 2020. "Using Unreal Engine to Visualize a Cosmological Volume" Universe 6, no. 10: 168. https://doi.org/10.3390/universe6100168
APA StyleMarsden, C., & Shankar, F. (2020). Using Unreal Engine to Visualize a Cosmological Volume. Universe, 6(10), 168. https://doi.org/10.3390/universe6100168