Regular Black Holes with Asymptotically Minkowski Cores
Abstract
:1. Introduction
- Minkowski core: We would require that ; that is, . This in turn implies . For , it is once again sufficient to demand . It is these class of objects that we focus on in this article.
2. Metric Analysis
- Taking the branch of the real-valued Lambert W function:Provided a lies in this interval, we have a well-defined coordinate location for a horizon when taking the branch of the Lambert W function. Keeping in mind that fixing a in this interval causes , the possible coordinate locations of this horizon are given by .
- Taking the branch of the real-valued Lambert W function:The branch only returns outputs for , hence we have the same restriction on a as before to ensure a defined coordinate location for the horizon—that . The range of the branch is entirely negative so all possible solutions will correspond to . However, the difference is that fixing a in this interval causes , hence the possible coordinate locations for this horizon are given by .
3. Curvature Tensors and Curvature Invariants
4. Surface Gravity, Hawking Temperature, and Horizon Area
- Outer horizon: The outer horizon is located at radial coordinate ; we therefore have:For the area of the outer horizon, we have:As a sanity check, let us check the behaviour of when (corresponding to the Schwarzschild solution).We have:This is the expected result.
- Inner horizon: The inner horizon is located at ; and through similar analysis we have the following:
- Extremal horizon: Extremality arises when the two horizons merge; this occurs when , at coordinate location , where . Consequently, , while , and .
5. Stress-Energy Tensor and Energy Conditions
5.1. Null Energy Condition
5.2. Strong Energy Condition
6. Comparison with Existing Regular Black Hole Models
- Bardeen: The Einstein tensor has non-zero components:As , we have .
- Hayward: The Einstein tensor has non-zero components:As , we have .
- Frolov: The Einstein tensor has non-zero components:As , we have .
- Exponential suppression: As displayed in Equation (9), we have:As , we have .
- Bardeen:;
- Hayward/Frolov:;
- Exponential suppression:.
7. Generalised Models
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; Springer: New York, NY, USA, 1995. [Google Scholar]
- Visser, M. Dirty black holes: Thermodynamics and horizon structure. Phys. Rev. D 1992, 46, 2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardeen, J.M. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, 9–13 September 1968; p. 174. [Google Scholar]
- Hayward, S.A. Formation and evaporation of regular black holes. Phys. Rev. Lett. 2006, 96, 31103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frolov, V.P. Information loss problem and a black hole model with a closed apparent horizon. J. High Energy Phys. 2014, 1405, 49. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D 2016, 94, 104056. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P. Remarks on non-singular black holes. EPJ Web Conf. 2018, 168, 01001. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Zelnikov, A. Quantum radiation from an evaporating nonsingular black hole. Phys. Rev. D 2017, 95, 124028. [Google Scholar] [CrossRef] [Green Version]
- Carballo-Rubio, R.; Filippo, F.D.; Liberati, S.; Pacilio, C.; Visser, M. On the viability of regular black holes. J. High Energy Phys. 2018, 1807, 23. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.O.; Mottola, E. Gravitational condensate stars: An alternative to black holes. arXiv 2002, arXiv:gr-qc/0109035. [Google Scholar]
- Mazur, P.O.; Mottola, E. Gravitational vacuum condensate stars. Proc. Nat. Acad. Sci. USA 2004, 101, 9545. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Wiltshire, D.L. Stable gravastars: An alternative to black holes? Class. Quant. Grav. 2004, 21, 1135. [Google Scholar] [CrossRef]
- Cattöen, C.; Faber, T.; Visser, M. Gravastars must have anisotropic pressures. Class. Quant. Grav. 2005, 22, 4189. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. Stable dark energy stars. Class. Quant. Grav. 2006, 23, 1525. [Google Scholar] [CrossRef] [Green Version]
- Chirenti, C.B.M.H.; Rezzolla, L. How to tell a gravastar from a black hole. Class. Quant. Grav. 2007, 24, 4191. [Google Scholar] [CrossRef]
- Moruno, P.M.; García, N.M.; Lobo, F.S.N.; Visser, M. Generic thin-shell gravastars. J. Cosmol. Astropart. Phys. 2012, 1203, 034. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Martín-Moruno, P.; Montelongo-García, N.; Visser, M. Novel stability approach of thin-shell gravastars. arXiv 2015, arXiv:1512.07659. [Google Scholar]
- Chirenti, C.; Rezzolla, L. Did GW150914 produce a rotating gravastar? Phys. Rev. D 2016, 94, 084016. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Vacuum nonsingular black hole. Gen. Rel. Grav. 1992, 24, 235. [Google Scholar] [CrossRef]
- Dymnikova, I.G. The algebraic structure of a cosmological term in spherically symmetric solutions. Phys. Lett. B 2000, 472, 33. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Variable cosmological constant: Geometry and physics. arXiv 2000, arXiv:gr-qc/0010016 v1. [Google Scholar]
- Dymnikova, I. Cosmological term as a source of mass. Class. Quant. Grav. 2002, 19, 725. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Spherically symmetric space-time with the regular de Sitter center. Int. J. Mod. Phys. D 2003, 12, 1015. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Galaktionov, E. Stability of a vacuum nonsingular black hole. Class. Quant. Grav. 2005, 22, 2331. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Korpusik, M. Regular black hole remnants in de Sitter space. Phys. Lett. B 2010, 685, 12. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. Gravitation; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Jacobson, T. When is gttgrr = −1? Class. Quant. Grav. 2007, 24, 5717. [Google Scholar] [CrossRef]
- Visser, M. The Kiselev black hole is neither perfect fluid, nor is it quintessence. arXiv 2019, arXiv:1908.11058. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Decomposition of total stress-energy for the generalised Kiselev black hole. arXiv 2019, arXiv:1910.08008. [Google Scholar]
- Valluri, S.R.; Jeffrey, D.J.; Corless, R.M. Some applications of the Lambert W function to physics. Can. J. Phys. 2000, 78, 823. [Google Scholar] [CrossRef] [Green Version]
- Valluri, S.R.; Gil, M.; Jeffrey, D.J.; Basu, S. The Lambert W function and quantum statistics. J. Math. Phys. 2009, 50, 102103. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Visser, M. Bounding the greybody factors for Schwarzschild black holes. Phys. Rev. D 2008, 78, 101502. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Visser, M. Quasi-normal frequencies: Key analytic results. J. High Energy Phys. 2011, 1103, 073. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Ngampitipan, T.; Visser, M. Regge-Wheeler equation, linear stability, and greybody factors for dirty black holes. Phys. Rev. D 2013, 88, 41502. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 84048. [Google Scholar] [CrossRef] [Green Version]
- Sonoda, H. Solving renormalization group equations with the Lambert W function. Phys. Rev. D 2013, 87, 85023. [Google Scholar] [CrossRef] [Green Version]
- Sonoda, H. Analytic form of the effective potential in the large N limit of a real scalar theory in four dimensions. arXiv 2013, arXiv:1302.6059. [Google Scholar]
- Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, D. On the Lambert W function. Adv. Comput. Math. 1996, 329–359. [Google Scholar] [CrossRef]
- Vial, A. Fall with linear drag and Wien’s displacement law: Approximate solution and Lambert function. Eur. J. Phys. 2012, 33, 751. [Google Scholar] [CrossRef]
- Stewart, S. Wien peaks and the Lambert W function. Revista Brasileira de Ensino de Fisica 2011, 33, 1–6. [Google Scholar] [CrossRef]
- Stewart, S. Spectral peaks and Wien’s displacement law. J. Thermophys. Heat Transf. 2012, 26, 689–692. [Google Scholar] [CrossRef]
- Visser, M. Primes and the Lambert W function. Mathematics 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Culetu, H. On a regular modified Schwarzschild spacetime. arXiv 2013, arXiv:1305.5964. [Google Scholar]
- Culetu, H. On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 2015, 54, 2855. [Google Scholar] [CrossRef] [Green Version]
- Culetu, H. Nonsingular black hole with a nonlinear electric source. Int. J. Mod. Phys. D 2015, 24, 1542001. [Google Scholar] [CrossRef]
- Culetu, H. Screening an extremal black hole with a thin shell of exotic matter. Phys. Dark Univ. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Balart, L.; Vagenas, E.C. Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 2014, 90, 24045. [Google Scholar] [CrossRef] [Green Version]
- Junior, E.L.B.; Rodrigues, M.E.; Houndjo, M.J.S. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source. J. Cosmol. Astropart. Phys. 2015, 1510, 60. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.E.; Junior, E.L.B.; Marques, G.T.; Zanchin, V.T. Regular black holes in f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 2016, 94, 24062. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Ling, Y.; Shen, Y.G. Singularities and the finale of black hole evaporation. Int. J. Mod. Phys. D 2013, 22, 1342016. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, S. Hawking fluxes and anomalies in rotating regular black holes with a time-delay. Class. Quant. Grav. 2016, 33, 225016. [Google Scholar] [CrossRef] [Green Version]
- Jawad, A.; Shahzad, M.U. Accretion onto some well-known regular black holes. Eur. Phys. J. C 2016, 76, 123. [Google Scholar] [CrossRef] [Green Version]
- Balart, L.; Fernando, S. A Smarr formula for charged black holes in nonlinear electrodynamics. Mod. Phys. Lett. A 2017, 32, 1750219. [Google Scholar] [CrossRef] [Green Version]
- Barceló, C.; Visser, M. Twilight for the energy conditions? Int. J. Mod. Phys. D 2002, 11, 1553. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.L.; Schleich, K.; Witt, D.M. Topological censorship. Phys. Rev. Lett. 1993, 71, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, E.E.; Wald, R.M. Does back reaction enforce the averaged null energy condition in semiclassical gravity? Phys. Rev. D 1996, 54, 6233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, L.H.; Roman, T.A. Averaged energy conditions and quantum inequalities. Phys. Rev. D 1995, 51, 4277. [Google Scholar] [CrossRef] [Green Version]
- Hartman, T.; Kundu, S.; Tajdini, A. Averaged null energy condition from causality. J. High Energy Phys. 2017, 1707, 066. [Google Scholar] [CrossRef] [Green Version]
- Roman, T.A. Quantum stress energy tensors and the weak energy condition. Phys. Rev. D 1986, 33, 3526. [Google Scholar] [CrossRef]
- Buniy, R.V.; Hsu, S.D.H. Instabilities and the null energy condition. Phys. Lett. B 2006, 632, 543. [Google Scholar] [CrossRef] [Green Version]
- Buniy, R.V.; Hsu, S.D.H.; Murray, B.M. The null energy condition and instability. Phys. Rev. D 2006, 74, 063518. [Google Scholar] [CrossRef] [Green Version]
- Martín-Moruno, P.; Visser, M. Semiclassical energy conditions for quantum vacuum states. J. High Energy Phys. 2013, 1309, 50. [Google Scholar] [CrossRef] [Green Version]
- Martín-Moruno, P.; Visser, M. Classical and quantum flux energy conditions for quantum vacuum states. Phys. Rev. D 2013, 88, 61701. [Google Scholar] [CrossRef] [Green Version]
- Martín-Moruno, P.; Visser, M. Semi-classical and nonlinear energy conditions. arXiv 2015, arXiv:1510.00158. [Google Scholar] [CrossRef] [Green Version]
- Martín-Moruno, P.; Visser, M. Classical and semi-classical energy conditions. Fundam. Theor. Phys. 2017, 189, 193. [Google Scholar] [CrossRef] [Green Version]
- Regge, T.; Wheeler, J.A. Stability of a Schwarzschild singularity. Phys. Rev. 1957, 108, 1063. [Google Scholar] [CrossRef]
- Christodoulou, D.; Klainerman, S. The Global Nonlinear Stability of the Minkowski Space; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Bieri, L. An Extension of the Stability Theorem of the Minkowski Space in General Relativity. J. Diff. Geom. 2010, 86, 17. [Google Scholar] [CrossRef]
1. | Alternatively, one could try, for instance, to represent by some rational polynomial in the r coordinate, . This is closer in spirit to the Bardeen/Hayward/Frolov regular black holes — but then one has to worry about potential poles and zeros in the mass function , and locating the horizons, and evaluating the surface gravities, typically involves intractable polynomials. The exponential suppression side-steps these messy issues. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, A.; Visser, M. Regular Black Holes with Asymptotically Minkowski Cores. Universe 2020, 6, 8. https://doi.org/10.3390/universe6010008
Simpson A, Visser M. Regular Black Holes with Asymptotically Minkowski Cores. Universe. 2020; 6(1):8. https://doi.org/10.3390/universe6010008
Chicago/Turabian StyleSimpson, Alex, and Matt Visser. 2020. "Regular Black Holes with Asymptotically Minkowski Cores" Universe 6, no. 1: 8. https://doi.org/10.3390/universe6010008
APA StyleSimpson, A., & Visser, M. (2020). Regular Black Holes with Asymptotically Minkowski Cores. Universe, 6(1), 8. https://doi.org/10.3390/universe6010008