Multiverse Predictions for Habitability: Number of Potentially Habitable Planets
Abstract
:1. Introduction
2. Fraction of Stars with Planets
2.1. What Sets the Size of the Smallest Metal-Retaining Galaxy?
2.2. Is Massive Star Lifetime Always Shorter Than Star Formation Time?
2.3. What Is the Metallicity Needed to Form Planets?
2.4. Are Hot Jupiter Systems Habitable?
3. Number of Habitable Planets per Star
3.1. Why Does Our Universe Naturally Make Terrestrial Planets?
3.1.1. What Sets the Size of Planets?
3.1.2. Is Life Possible on Planetesimals?
3.2. Why Is the Interplanet Spacing Equal to the Width of the Temperate Zone?
3.3. Planet Migration
4. Discussion: Comparing 480 Hypotheses
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Planetary Parameters
References
- Sandora, M. Multiverse Predictions for Habitability I: The Number of Stars and Their Properties. arXiv 2019, arXiv:1901.04614. [Google Scholar] [CrossRef]
- Vilenkin, A. Predictions from Quantum Cosmology. Phys. Rev. Lett. 1995, 74, 846–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, A.; Sullivan, W.T., III. A New Empirical Constraint on the Prevalence of Technological Species in the Universe. Astrobiology 2016, 16, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maschberger, T. On the function describing the stellar initial mass function. Mon. Not. R. Astron. Soc. 2012, 429, 1725–1733. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.L.; Li, H. The first planets: The critical metallicity for planet formation. Astrophys. J. 2012, 751, 81. [Google Scholar] [CrossRef]
- Petigura, E.A.; Marcy, G.W.; Howard, A.W. A plateau in the planet population below twice the size of Earth. Astrophys. J. 2013, 770, 69. [Google Scholar] [CrossRef]
- Owen, J.E.; Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 2017, 847, 29. [Google Scholar] [CrossRef]
- Ginzburg, S.; Schlichting, H.E.; Sari, R. Core-powered mass loss sculpts the radius distribution of small exoplanets. arXiv 2017, arXiv:1708.01621. [Google Scholar]
- Zeng, L.; Jacobsen, S.B.; Sasselov, D.D.; Vanderburg, A. Survival function analysis of planet size distribution with Gaia Data Release 2 updates. Mon. Not. R. Astron. Soc. 2018, 479, 5567–5576. [Google Scholar] [CrossRef]
- Adams, F.C. Constraints on Alternate Universes: Stars and habitable planets with different fundamental constants. J. Cosmol. Astropart. Phys. 2016, 2016, 042. [Google Scholar] [CrossRef]
- Adams, F.C.; Coppess, K.R.; Bloch, A.M. Planets in other universes: Habitability constraints on density fluctuations and galactic structure. J. Cosmol. Astropart. Phys. 2015, 2015, 030. [Google Scholar] [CrossRef]
- Weinberg, S. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 1987, 59, 2607–2610. [Google Scholar] [CrossRef] [PubMed]
- Thielemann, F.K.; Nomoto, K.; Hashimoto, M.A. Core-collapse supernovae and their ejecta. Astrophys. J. 1996, 460, 408. [Google Scholar] [CrossRef]
- Rees, M.J.; Ostriker, J. Cooling, dynamics and fragmentation of massive gas clouds: Clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 1977, 179, 541–559. [Google Scholar] [CrossRef]
- Padmanabhan, T. Theoretical Astrophysics: Volume 2, Stars and Stellar Systems; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Tremonti, C.A.; Heckman, T.M.; Kauffmann, G.; Brinchmann, J.; Charlot, S.; White, S.D.; Seibert, M.; Peng, E.W.; Schlegel, D.J.; Uomoto, A.; et al. The origin of the mass-metallicity relation: Insights from 53,000 star-forming galaxies in the sloan digital sky survey. Astrophys. J. 2004, 613, 898. [Google Scholar] [CrossRef]
- Press, W.H.; Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 1974, 187, 425–438. [Google Scholar] [CrossRef]
- Dayal, P.; Ward, M.; Cockell, C. The habitability of the Universe through 13 billion years of cosmic time. arXiv 2016, arXiv:1606.09224. [Google Scholar]
- Woosley, S.E.; Heger, A.; Weaver, T.A. The evolution and explosion of massive stars. Rev. Mod. Phys. 2002, 74, 1015–1071. [Google Scholar] [CrossRef]
- Burrows, A.S.; Ostriker, J.P. Astronomical reach of fundamental physics. Proc. Natl. Acad. Sci. USA 2014, 111, 2409–2416. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Alexander, R.; Pascucci, I.; Andrews, S.; Armitage, P.; Cieza, L. The dispersal of protoplanetary disks. arXiv 2013, arXiv:1311.1819. [Google Scholar]
- Apai, D.; Lauretta, D.S. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives; Cambridge University Press: Cambridge, UK, 2010; Volume 12. [Google Scholar]
- Ercolano, B.; Clarke, C. Metallicity, planet formation and disc lifetimes. Mon. Not. R. Astron. Soc. 2010, 402, 2735–2743. [Google Scholar] [CrossRef] [Green Version]
- Zahid, H.J.; Dima, G.I.; Kudritzki, R.P.; Kewley, L.J.; Geller, M.J.; Hwang, H.S.; Silverman, J.D.; Kashino, D. The universal relation of galactic chemical evolution: The origin of the mass-metallicity relation. Astrophys. J. 2014, 791, 130. [Google Scholar] [CrossRef]
- Schellekens, A.N. Life at the Interface of Particle Physics and String Theory. Rev. Mod. Phys. 2013, 85, 1491–1540. [Google Scholar] [CrossRef]
- Tegmark, M.; Rees, M.J. Why Is the Cosmic Microwave Background Fluctuation Level 10-5? Astrophys. J. 1998, 499, 526–532. [Google Scholar] [CrossRef]
- Fischer, D.A.; Valenti, J. The Planet-Metallicity Correlation. Astrophys. J. 2005, 622, 1102–1117. [Google Scholar] [CrossRef]
- Batygin, K.; Bodenheimer, P.H.; Laughlin, G.P. In situ formation and dynamical evolution of hot Jupiter systems. Astrophys. J. 2016, 829, 114. [Google Scholar] [CrossRef]
- Dawson, R.I.; Johnson, J.A. Origins of Hot Jupiters. arXiv 2018, arXiv:1801.06117. [Google Scholar] [CrossRef]
- Raymond, S.N.; Mandell, A.M.; Sigurdsson, S. Exotic Earths: Forming Habitable Worlds with Giant Planet Migration. Science 2006, 313, 1413–1416. [Google Scholar] [CrossRef] [Green Version]
- Smallwood, J.L.; Martin, R.G.; Lepp, S.; Livio, M. Asteroid impacts on terrestrial planets: The effects of super-Earths and the role of the ν 6 resonance. Mon. Not. R. Astron. Soc. 2017, 473, 295–305. [Google Scholar] [CrossRef]
- Buchhave, L.A.; Bitsch, B.; Johansen, A.; Latham, D.W.; Bizzarro, M.; Bieryla, A.; Kipping, D.M. Jupiter Analogues Orbit Stars with an Average Metallicity Close to that of the Sun. arXiv 2018, arXiv:1802.06794. [Google Scholar]
- Ndugu, N.; Bitsch, B.; Jurua, E. Planet population synthesis driven by pebble accretion in cluster environments. Mon. Not. R. Astron. Soc. 2017, 474, 886–897. [Google Scholar] [CrossRef]
- Fabrycky, D.; Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 2007, 669, 1298. [Google Scholar] [CrossRef]
- Becker, J.C.; Vanderburg, A.; Adams, F.C.; Rappaport, S.A.; Schwengeler, H.M. WASP-47: A hot Jupiter system with two additional planets discovered by K2. Astrophys. Lett. 2015, 812, L18. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ford, E.B.; Matsumura, S.; Rasio, F.A. Dynamical outcomes of planet-planet scattering. Astrophys. J. 2008, 686, 580. [Google Scholar] [CrossRef]
- Spalding, C.; Batygin, K. A Secular Resonant Origin for the Loneliness of Hot Jupiters. Astron. J. 2017, 154, 93. [Google Scholar] [CrossRef] [Green Version]
- Johansen, A.; Lambrechts, M. Forming Planets via Pebble Accretion. Annu. Rev. Earth Planet. Sci. 2017, 45, 359–387. [Google Scholar] [CrossRef]
- Johnson, J.A.; Aller, K.M.; Howard, A.W.; Crepp, J.R. Giant planet occurrence in the stellar mass-metallicity plane. Publ. Astron. Soc. Pac. 2010, 122, 905. [Google Scholar] [CrossRef]
- Taubner, R.S.; Pappenreiter, P.; Zwicker, J.; Smrzka, D.; Pruckner, C.; Kolar, P.; Bernacchi, S.; Seifert, A.H.; Krajete, A.; Bach, W.; et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 2018, 9, 748. [Google Scholar] [CrossRef] [Green Version]
- Bains, W. Many chemistries could be used to build living systems. Astrobiology 2004, 4, 137–167. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Irwin, L.N. The prospect of alien life in exotic forms on other worlds. Naturwissenschaften 2006, 93, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.A. Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 2015, 801, 41. [Google Scholar] [CrossRef]
- Ward, P.D.; Brownlee, D. Rare Earth: Why Complex Life Is Uncommon in the Universe; Copernicus Books: New York, NY, USA, 2003. [Google Scholar]
- Owen, J.E.; Lai, D. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Mon. Not. R. Astron. Soc. 2018, 479, 5012–5021. [Google Scholar] [CrossRef] [Green Version]
- Fulton, B.J.; Petigura, E.A.; Howard, A.W.; Isaacson, H.; Marcy, G.W.; Cargile, P.A.; Hebb, L.; Weiss, L.M.; Johnson, J.A.; Morton, T.D.; et al. The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 2017, 154, 109. [Google Scholar] [CrossRef]
- Fressin, F.; Torres, G.; Charbonneau, D.; Bryson, S.T.; Christiansen, J.; Dressing, C.D.; Jenkins, J.M.; Walkowicz, L.M.; Batalha, N.M. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 2013, 766, 81. [Google Scholar] [CrossRef]
- Raymond, S.N.; Boulet, T.; Izidoro, A.; Esteves, L.; Bitsch, B. Migration-driven diversity of super-Earth compositions. Mon. Not. R. Astron. Soc. Lett. 2018, 479, L81–L85. [Google Scholar] [CrossRef]
- Kokubo, E.; Kominami, J.; Ida, S. Formation of terrestrial planets from protoplanets. I. Statistics of basic dynamical properties. Astrophys. J. 2006, 642, 1131. [Google Scholar] [CrossRef]
- Williams, J.P.; Cieza, L.A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 2011, 49, 67–117. [Google Scholar] [CrossRef]
- Pascucci, I.; Testi, L.; Herczeg, G.; Long, F.; Manara, C.; Hendler, N.; Mulders, G.; Krijt, S.; Ciesla, F.; Henning, T.; et al. A steeper than linear disk mass–stellar mass scaling relation. Astrophys. J. 2016, 831, 125. [Google Scholar] [CrossRef]
- Bate, M.R. On the diversity and statistical properties of protostellar discs. Mon. Not. R. Astron. Soc. 2018, 475, 5618–5658. [Google Scholar] [CrossRef] [Green Version]
- Morbidelli, A.; Lambrechts, M.; Jacobson, S.; Bitsch, B. The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores. Icarus 2015, 258, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, G.M.; Kenyon, S.J. Planet formation around stars of various masses: The snow line and the frequency of giant planets. Astrophys. J. 2008, 673, 502. [Google Scholar] [CrossRef]
- Kennedy, G.M.; Kenyon, S.J. Planet formation around stars of various masses: Hot Super-Earths. Astrophys. J. 2008, 682, 1264. [Google Scholar] [CrossRef]
- Ida, S.; Guillot, T.; Morbidelli, A. The radial dependence of pebble accretion rates: A source of diversity in planetary systems-I. Analytical formulation. Astron. Astrophys. 2016, 591, A72. [Google Scholar] [CrossRef]
- Adams, F.C.; Hollenbach, D.; Laughlin, G.; Gorti, U. Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates. Astrophys. J. 2004, 611, 360. [Google Scholar] [CrossRef]
- Morbidelli, A.; Lunine, J.I.; O’Brien, D.P.; Raymond, S.N.; Walsh, K.J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 2012, 40, 251–275. [Google Scholar] [CrossRef]
- Youdin, A.N.; Kenyon, S.J. From disks to planets. In Planets, Stars and Stellar Systems; Springer: New York, NY, USA, 2013; pp. 1–62. [Google Scholar]
- Izidoro, A.; Raymond, S.N. Formation of Terrestrial Planets. In Handbook of Exoplanets; Springer: New York, NY, USA, 2018; pp. 1–59. [Google Scholar] [Green Version]
- Schlichting, H.E. Formation of close in super-Earths and mini-Neptunes: Required disk masses and their implications. Astrophys. J. Lett. 2014, 795, L15. [Google Scholar] [CrossRef]
- Sinukoff, E.; Fulton, B.; Scuderi, L.; Gaidos, E. Below One Earth: The Detection, Formation, and Properties of Subterrestrial Worlds. Space Sci. Rev. 2013, 180, 71–99. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.N.; Li, J.; Bai, C.Y. Scaling relations of lognormal type growth process with an extremal principle of entropy. Entropy 2017, 19, 56. [Google Scholar] [CrossRef]
- Cumming, A.; Butler, R.P.; Marcy, G.W.; Vogt, S.S.; Wright, J.T.; Fischer, D.A. The Keck planet search: Detectability and the minimum mass and orbital period distribution of extrasolar planets. Publ. Astron. Soc. Pac. 2008, 120, 531. [Google Scholar] [CrossRef]
- Zeng, L.; Jacobsen, S.B.; Sasselov, D.D.; Vanderburg, A. Survival Function Analysis of Planet Orbit Distribution and Occurrence Rate Estimate. arXiv 2018, arXiv:1801.03994. [Google Scholar]
- Simon, J.B.; Armitage, P.J.; Li, R.; Youdin, A.N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 2016, 822, 55. [Google Scholar] [CrossRef]
- Mordasini, C. Planetary population synthesis. In Handbook of Exoplanets; Springer: New York, NY, USA, 2018; pp. 1–50. [Google Scholar]
- Raymond, S.N.; Scalo, J.; Meadows, V.S. A decreased probability of habitable planet formation around low-mass stars. Astrophys. J. 2007, 669, 606. [Google Scholar] [CrossRef]
- Tasker, E.; Tan, J.; Heng, K.; Kane, S.; Spiegel, D.; Brasser, R.; Casey, A.; Desch, S.; Dorn, C.; Hernlund, J.; et al. The language of exoplanet ranking metrics needs to change. Nat. Astron. 2017, 1, 0042. [Google Scholar] [CrossRef] [Green Version]
- Kopparapu, R.K.; Ramirez, R.; Kasting, J.F.; Eymet, V.; Robinson, T.D.; Mahadevan, S.; Terrien, R.C.; Domagal-Goldman, S.; Meadows, V.; Deshpande, R. Habitable zones around main-sequence stars: New estimates. Astrophys. J. 2013, 765, 131. [Google Scholar] [CrossRef]
- Yang, J.; Boué, G.; Fabrycky, D.C.; Abbot, D.S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 2014, 787, L2. [Google Scholar] [CrossRef]
- Kasting, J.F.; Whitmire, D.P.; Reynolds, R.T. Habitable zones around main sequence stars. Icarus 1993, 101, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Leconte, J.; Forget, F.; Charnay, B.; Wordsworth, R.; Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 2013, 504, 268. [Google Scholar] [CrossRef]
- Walker, J.C.; Hays, P.; Kasting, J.F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Ocean. 1981, 86, 9776–9782. [Google Scholar] [CrossRef]
- Rushby, A.J.; Johnson, M.; Mills, B.J.; Watson, A.J.; Claire, M.W. Long-Term Planetary Habitability and the Carbonate-Silicate Cycle. Astrobiology 2018, 18, 469–480. [Google Scholar] [CrossRef]
- Barnes, R.; Quinn, T. The (in) stability of planetary systems. Astrophys. J. 2004, 611, 494. [Google Scholar] [CrossRef]
- Dawson, R.I. Tightly Packed Planetary Systems. In Handbook of Exoplanets; Springer: New York, NY, USA, 2017; pp. 1–18. [Google Scholar]
- Holman, M.J.; Wisdom, J. Dynamical stability in the outer solar system and the delivery of short period comets. Astron. J. 1993, 105, 1987–1999. [Google Scholar] [CrossRef]
- Fang, J.; Margot, J.L. Are planetary systems filled to capacity? A study based on Kepler results. Astrophys. J. 2013, 767, 115. [Google Scholar] [CrossRef]
- Raymond, S.N.; Barnes, R.; Veras, D.; Armitage, P.J.; Gorelick, N.; Greenberg, R. Planet-planet scattering leads to tightly packed planetary systems. Astrophys. J. Lett. 2009, 696, L98. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler planet-detection mission: Introduction and first results. Science 2010, 327, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Snellgrove, M.; Papaloizou, J.; Nelson, R. On disc driven inward migration of resonantly coupled planets with application to the system around GJ876. Astron. Astrophys. 2001, 374, 1092–1099. [Google Scholar] [CrossRef]
- Unterborn, C.T.; Desch, S.J.; Hinkel, N.R.; Lorenzo, A. Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions. Nat. Astron. 2018, 2, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Trilling, D.E.; Lunine, J.I.; Benz, W. Orbital migration and the frequency of giant planet formation. Astron. Astrophys. 2002, 394, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Baruteau, C.; Masset, F. Recent developments in planet migration theory. In Tides in Astronomy and Astrophysics; Springer: New York, NY, USA, 2013; pp. 201–253. [Google Scholar]
- Morbidelli, A.; Crida, A. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 2007, 191, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Masset, F.; Snellgrove, M. Reversing type II migration: Resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 2001, 320, L55–L59. [Google Scholar] [CrossRef]
- Ida, S.; Lin, D.N. Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys. J. 2004, 604, 388. [Google Scholar] [CrossRef]
- Tanaka, H.; Takeuchi, T.; Ward, W.R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 2002, 565, 1257. [Google Scholar] [CrossRef]
- Ormel, C.W.; Liu, B.; Schoonenberg, D. Formation of TRAPPIST-1 and other compact systems. Astron. Astrophys. 2017, 604, A1. [Google Scholar] [CrossRef] [Green Version]
- Gillon, M.; Triaud, A.H.; Demory, B.O.; Jehin, E.; Agol, E.; Deck, K.M.; Lederer, S.M.; De Wit, J.; Burdanov, A.; Ingalls, J.G.; et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 2017, 542, 456. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, D.; Rein, H.; Petrovich, C.; Murray, N. Convergent Migration Renders TRAPPIST-1 Long-lived. Astrophys. J. Lett. 2017, 840, L19. [Google Scholar] [CrossRef] [Green Version]
- Sandora, M. Multiverse Predictions for Habitability III: Fraction of Planets That Develop Life. arXiv 2019, arXiv:1903.06283. [Google Scholar]
- Sandora, M. Multiverse Predictions for Habitability IV: Fraction of Life that Develops Intelligence. arXiv 2019, arXiv:1904.11796. [Google Scholar]
- Schulze-Makuch, D.; Méndez, A.; Fairén, A.G.; Von Paris, P.; Turse, C.; Boyer, G.; Davila, A.F.; António, M.R.d.S.; Catling, D.; Irwin, L.N. A two-tiered approach to assessing the habitability of exoplanets. Astrobiology 2011, 11, 1041–1052. [Google Scholar] [CrossRef]
- Cockell, C.S.; Bush, T.; Bryce, C.; Direito, S.; Fox-Powell, M.; Harrison, J.; Lammer, H.; Landenmark, H.; Martin-Torres, J.; Nicholson, N.; et al. Habitability: A review. Astrobiology 2016, 16, 89–117. [Google Scholar] [CrossRef]
- Press, W.H.; Lightman, A.P. Dependence of macrophysical phenomena on the values of the fundamental constants. Philos. Trans. R. Soc. Lond. Ser. A 1983, 310, 323–334. [Google Scholar] [CrossRef]
- Tegmark, M.; Aguirre, A.; Rees, M.J.; Wilczek, F. Dimensionless constants, cosmology, and other dark matters. Phys. Rev. D 2006, 73, 023505. [Google Scholar] [CrossRef] [Green Version]
- Shu, F.H. Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 1977, 214, 488–497. [Google Scholar] [CrossRef]
1 | The code to compute all probabilities discussed in the text is made available at https://github.com/mccsandora/Multiverse-Habitability-Handler. |
2 | A third explanation was additionally given in [34] that the disk dispersal timescale increases with metallicity, allowing a longer period of accretion onto seed cores. |
3 | This is not entirely true: there is known to be some feedback between the irradiation of initial atmospheres from the host star that favors both small and large atmospheres [46]. While this leads to the interesting bimodal distribution of observed radii [47], this is driven by atmospheric size, and is certainly not enough to affect the terrestrial core. |
4 | This neglects other potential thresholds, such as the inner boundary set by the photosynthetic threshold of carbon dioxide abundance, which is remarkably close to the inner boundary discussed here [76]. |
Quantity | Description | Expression |
---|---|---|
fraction of stars in galaxies that retain supernova ejecta | ||
fraction of stars born after supernova enrichment | ||
fraction of stars with high enough Z for planets | ||
fraction of stars without hot Jupiters | ||
average number of planets around a star | GI: Equation (25), iso: Equation (31) | |
fraction of terrestrial planets | GI: Equation (27), iso: Equation (30) | |
fraction of temperate planets |
Choices | |||
---|---|---|---|
standard | 0.229 | 0.260 | 0.409 |
Rayleigh distribution | 0.229 | 0.251 | 0.411 |
irradiation | 0.255 | 0.320 | 0.426 |
with no dependence | 0.380 | 0.254 | 0.007 |
shot noise | 0.232 | 0.260 | 0.306 |
Exponent | |||
---|---|---|---|
0.234 | 0.419 | 0.436 | |
0.302 | 0.260 | 0.424 | |
0.362 | 0.157 | 0.333 | |
0.469 | 0.044 | 0.228 |
Criteria | ||||
---|---|---|---|---|
yellow S | 0.189 | 0.437 | 0.318 | 2.57 |
yellow temp S | 0.241 | 0.363 | 0.151 | 1.54 |
yellow GI S | 0.229 | 0.26 | 0.409 | 6.72 |
yellow GI temp S | 0.377 | 0.196 | 0.42 | 6.65 |
yellow iso S | 0.234 | 0.419 | 0.436 | 5.02 |
yellow iso temp S | 0.313 | 0.48 | 0.245 | 3.54 |
yellow HJ S | 0.181 | 0.428 | 0.308 | 2.59 |
yellow HJ temp S | 0.237 | 0.359 | 0.147 | 1.54 |
yellow HJ GI S | 0.23 | 0.261 | 0.41 | 6.72 |
yellow HJ GI temp S | 0.378 | 0.197 | 0.419 | 6.64 |
yellow HJ iso S | 0.231 | 0.424 | 0.431 | 5.05 |
yellow HJ iso temp S | 0.311 | 0.483 | 0.241 | 3.54 |
Criteria | ||||
---|---|---|---|---|
number of stars | 0.381 | 0.355 | 8.06 | 0.000199 |
temp | 0.175 | 0.0524 | 8.87 | 0.000923 |
GI | 0.424 | 0.281 | 1.16 | 0.00021 |
GI temp | 0.227 | 0.279 | 9.7 | 0.00269 |
iso | 0.422 | 0.493 | 8.69 | 0.000239 |
iso temp | 0.198 | 0.112 | 8.9 | 0.00158 |
HJ | 0.366 | 0.336 | 7.14 | 0.000199 |
HJ temp | 0.175 | 0.0523 | 8.87 | 0.00092 |
HJ GI | 0.425 | 0.282 | 1.15 | 0.00021 |
HJ GI temp | 0.227 | 0.279 | 9.7 | 0.0027 |
HJ iso | 0.419 | 0.499 | 8.53 | 0.00024 |
HJ iso temp | 0.198 | 0.112 | 8.9 | 0.00158 |
bio | 0.284 | 0.106 | 2.32 | 0.00379 |
bio temp | 0.145 | 0.0152 | 3.95 | 0.00282 |
bio GI | 0.211 | 0.0161 | 0.000405 | 0.0562 |
bio GI temp | 0.282 | 0.0162 | 0.00153 | 0.324 |
bio iso | 0.244 | 0.216 | 5.28 | 0.00961 |
bio iso temp | 0.167 | 0.0334 | 5.42 | 0.00661 |
bio HJ | 0.284 | 0.106 | 2.03 | 0.00378 |
bio HJ temp | 0.145 | 0.0152 | 3.95 | 0.00281 |
bio HJ GI | 0.211 | 0.0162 | 0.000405 | 0.0565 |
bio HJ GI temp | 0.282 | 0.0163 | 0.00153 | 0.325 |
bio HJ iso | 0.244 | 0.215 | 5.13 | 0.00958 |
bio HJ iso temp | 0.167 | 0.0334 | 5.41 | 0.00661 |
TL | 0.33 | 0.455 | 4.57 | 3.39 |
TL temp | 0.455 | 0.257 | 1.93 | 4.61 |
TL GI | 0.421 | 0.283 | 6.42 | 3.09 |
TL GI temp | 0.237 | 0.29 | 8.16 | 0.000146 |
TL iso | 0.398 | 0.433 | 4.6 | 5.6 |
TL iso temp | 0.454 | 0.356 | 3.63 | 0.000107 |
TL HJ | 0.306 | 0.433 | 3.11 | 3.15 |
TL HJ temp | 0.454 | 0.256 | 1.8 | 4.52 |
TL HJ GI | 0.422 | 0.284 | 6.38 | 3.08 |
TL HJ GI temp | 0.236 | 0.291 | 8.12 | 0.000146 |
TL HJ iso | 0.393 | 0.439 | 4.39 | 5.53 |
TL HJ iso temp | 0.455 | 0.355 | 3.55 | 0.000106 |
TL bio | 0.011 | 0.365 | 7.19 | 0.00304 |
TL bio temp | 0.0154 | 0.276 | 4.16 | 0.00788 |
TL bio GI | 0.0562 | 0.0184 | 0.000277 | 0.0109 |
TL bio GI temp | 0.18 | 0.023 | 0.000429 | 0.0631 |
TL bio iso | 0.0237 | 0.485 | 0.000107 | 0.0087 |
TL bio iso temp | 0.0403 | 0.407 | 9.85 | 0.0238 |
TL bio HJ | 0.00968 | 0.362 | 4.84 | 0.00301 |
TL bio HJ temp | 0.0149 | 0.275 | 3.89 | 0.00779 |
TL bio HJ GI | 0.0561 | 0.0185 | 0.000276 | 0.0109 |
TL bio HJ GI temp | 0.18 | 0.0231 | 0.000428 | 0.063 |
TL bio HJ iso | 0.0228 | 0.488 | 0.000101 | 0.00861 |
TL bio HJ iso temp | 0.0394 | 0.406 | 9.61 | 0.0235 |
photo | 0.439 | 0.183 | 8.43 | 0.000127 |
photo S | 0.241 | 0.382 | 0.381 | 8.95 |
photo temp | 0.403 | 0.121 | 3.11 | 7.34 |
photo temp S | 0.338 | 0.292 | 0.207 | 7.07 |
photo GI | 0.016 | 0.296 | 8.09 | 0.00169 |
photo GI S | 0.335 | 0.142 | 0.33 | 34.8 |
photo GI temp | 0.00942 | 0.276 | 8.96 | 0.00513 |
photo GI temp S | 0.497 | 0.113 | 0.424 | 45.7 |
photo iso | 0.456 | 0.267 | 1.75 | 0.000346 |
photo iso S | 0.305 | 0.448 | 0.494 | 13.7 |
photo iso temp | 0.329 | 0.18 | 6.74 | 0.000207 |
photo iso temp S | 0.403 | 0.458 | 0.321 | 12.7 |
photo HJ | 0.439 | 0.183 | 8.22 | 0.000126 |
photo HJ S | 0.237 | 0.377 | 0.376 | 9.0 |
photo HJ temp | 0.403 | 0.121 | 3.08 | 7.31 |
photo HJ temp S | 0.337 | 0.291 | 0.205 | 7.08 |
photo HJ GI | 0.016 | 0.297 | 8.04 | 0.00168 |
photo HJ GI S | 0.336 | 0.142 | 0.331 | 35.0 |
photo HJ GI temp | 0.00942 | 0.276 | 8.92 | 0.00513 |
photo HJ GI temp S | 0.498 | 0.113 | 0.425 | 45.9 |
photo HJ iso | 0.456 | 0.267 | 1.72 | 0.000342 |
photo HJ iso S | 0.302 | 0.452 | 0.497 | 13.8 |
photo HJ iso temp | 0.329 | 0.18 | 6.68 | 0.000206 |
photo HJ iso temp S | 0.402 | 0.455 | 0.319 | 12.8 |
photo bio | 0.0631 | 0.103 | 1.75 | 0.00197 |
photo bio S | 0.18 | 0.409 | 0.43 | 7.89 |
photo bio temp | 0.123 | 0.0849 | 5.35 | 0.000987 |
photo bio temp S | 0.222 | 0.335 | 0.262 | 6.98 |
photo bio GI | 0.353 | 0.0162 | 0.000924 | 0.166 |
photo bio GI S | 0.316 | 0.131 | 0.308 | 30.9 |
photo bio GI temp | 0.154 | 0.0141 | 0.000688 | 0.34 |
photo bio GI temp S | 0.484 | 0.1 | 0.408 | 40.3 |
photo bio iso | 0.104 | 0.188 | 5.14 | 0.00757 |
photo bio iso S | 0.262 | 0.42 | 0.448 | 11.6 |
photo bio iso temp | 0.185 | 0.152 | 1.51 | 0.00365 |
photo bio iso temp S | 0.322 | 0.489 | 0.382 | 11.8 |
photo bio HJ | 0.0631 | 0.103 | 1.71 | 0.00195 |
photo bio HJ S | 0.175 | 0.404 | 0.426 | 7.94 |
photo bio HJ temp | 0.123 | 0.0848 | 5.31 | 0.000983 |
photo bio HJ temp S | 0.22 | 0.333 | 0.26 | 6.99 |
photo bio HJ GI | 0.353 | 0.0162 | 0.000921 | 0.167 |
photo bio HJ GI S | 0.317 | 0.132 | 0.309 | 31.0 |
photo bio HJ GI temp | 0.154 | 0.0141 | 0.000687 | 0.34 |
photo bio HJ GI temp S | 0.485 | 0.101 | 0.409 | 40.5 |
photo bio HJ iso | 0.104 | 0.188 | 5.06 | 0.0075 |
photo bio HJ iso S | 0.259 | 0.424 | 0.451 | 11.7 |
photo bio HJ iso temp | 0.185 | 0.151 | 1.5 | 0.00363 |
photo bio HJ iso temp S | 0.32 | 0.492 | 0.379 | 11.8 |
photo TL | 0.478 | 0.232 | 7.36 | 0.000102 |
photo TL S | 0.376 | 0.423 | 0.382 | 10.8 |
photo TL temp | 0.412 | 0.197 | 2.61 | 6.01 |
photo TL temp S | 0.453 | 0.288 | 0.283 | 10.8 |
photo TL GI | 0.016 | 0.312 | 4.34 | 0.000271 |
photo TL GI S | 0.312 | 0.431 | 0.447 | 13.9 |
photo TL GI temp | 0.0096 | 0.306 | 1.93 | 0.000332 |
photo TL GI temp S | 0.485 | 0.317 | 0.345 | 16.7 |
photo TL iso | 0.41 | 0.308 | 1.46 | 0.000264 |
photo TL iso S | 0.384 | 0.46 | 0.435 | 15.9 |
photo TL iso temp | 0.323 | 0.26 | 5.48 | 0.000154 |
photo TL iso temp S | 0.447 | 0.331 | 0.365 | 15.5 |
photo TL HJ | 0.478 | 0.232 | 6.94 | 9.94 |
photo TL HJ S | 0.36 | 0.394 | 0.355 | 11.2 |
photo TL HJ temp | 0.412 | 0.197 | 2.51 | 5.92 |
photo TL HJ temp S | 0.458 | 0.276 | 0.272 | 10.9 |
photo TL HJ GI | 0.016 | 0.312 | 4.31 | 0.000269 |
photo TL HJ GI S | 0.312 | 0.43 | 0.446 | 13.9 |
photo TL HJ GI temp | 0.00959 | 0.306 | 1.92 | 0.00033 |
photo TL HJ GI temp S | 0.484 | 0.316 | 0.344 | 16.7 |
photo TL HJ iso | 0.41 | 0.307 | 1.42 | 0.000258 |
photo TL HJ iso S | 0.382 | 0.452 | 0.43 | 16.0 |
photo TL HJ iso temp | 0.323 | 0.26 | 5.37 | 0.000151 |
photo TL HJ iso temp S | 0.448 | 0.325 | 0.362 | 15.5 |
photo TL bio | 0.0354 | 0.29 | 0.000149 | 0.017 |
photo TL bio S | 0.252 | 0.495 | 0.423 | 14.9 |
photo TL bio temp | 0.0406 | 0.291 | 0.000116 | 0.0252 |
photo TL bio temp S | 0.33 | 0.376 | 0.413 | 20.9 |
photo TL bio GI | 0.317 | 0.0329 | 0.00121 | 0.0717 |
photo TL bio GI S | 0.104 | 0.413 | 0.385 | 17.9 |
photo TL bio GI temp | 0.371 | 0.0357 | 0.00086 | 0.14 |
photo TL bio GI temp S | 0.196 | 0.283 | 0.397 | 27.3 |
photo TL bio iso | 0.087 | 0.43 | 0.000325 | 0.0495 |
photo TL bio iso S | 0.249 | 0.5 | 0.393 | 20.4 |
photo TL bio iso temp | 0.0982 | 0.432 | 0.00026 | 0.07 |
photo TL bio iso temp S | 0.353 | 0.383 | 0.366 | 25.1 |
photo TL bio HJ | 0.0347 | 0.289 | 0.000141 | 0.0167 |
photo TL bio HJ S | 0.218 | 0.456 | 0.449 | 16.0 |
photo TL bio HJ temp | 0.0399 | 0.29 | 0.000112 | 0.025 |
photo TL bio HJ temp S | 0.311 | 0.354 | 0.424 | 21.6 |
photo TL bio HJ GI | 0.316 | 0.033 | 0.00121 | 0.0715 |
photo TL bio HJ GI S | 0.103 | 0.411 | 0.385 | 17.9 |
photo TL bio HJ GI temp | 0.37 | 0.0359 | 0.000859 | 0.14 |
photo TL bio HJ GI temp S | 0.196 | 0.282 | 0.398 | 27.2 |
photo TL bio HJ iso | 0.0854 | 0.429 | 0.000318 | 0.0488 |
photo TL bio HJ iso S | 0.243 | 0.49 | 0.397 | 20.7 |
photo TL bio HJ iso temp | 0.0966 | 0.43 | 0.000255 | 0.0693 |
photo TL bio HJ iso temp S | 0.348 | 0.375 | 0.367 | 25.3 |
yellow | 0.486 | 0.162 | 8.78 | 9.64 |
yellow temp | 0.492 | 0.161 | 2.31 | 2.61 |
yellow GI | 0.00555 | 0.292 | 6.88 | 0.0127 |
yellow GI temp | 0.00329 | 0.272 | 2.81 | 0.00588 |
yellow iso | 0.391 | 0.219 | 2.03 | 0.000336 |
yellow iso temp | 0.387 | 0.218 | 5.35 | 9.14 |
yellow HJ | 0.486 | 0.162 | 8.64 | 9.55 |
yellow HJ temp | 0.492 | 0.161 | 2.27 | 2.58 |
yellow HJ GI | 0.00554 | 0.292 | 6.83 | 0.0126 |
yellow HJ GI temp | 0.00329 | 0.272 | 2.79 | 0.00584 |
yellow HJ iso | 0.391 | 0.219 | 1.99 | 0.000333 |
yellow HJ iso temp | 0.387 | 0.218 | 5.26 | 9.06 |
yellow bio | 0.0351 | 0.102 | 1.72 | 0.00178 |
yellow bio S | 0.123 | 0.47 | 0.38 | 2.88 |
yellow bio temp | 0.0324 | 0.0912 | 5.21 | 0.000555 |
yellow bio temp S | 0.126 | 0.406 | 0.215 | 2.05 |
yellow bio GI | 0.0503 | 0.0133 | 0.000736 | 0.13 |
yellow bio GI S | 0.177 | 0.25 | 0.367 | 6.9 |
yellow bio GI temp | 0.0316 | 0.00818 | 0.000315 | 0.0632 |
yellow bio GI temp S | 0.299 | 0.177 | 0.474 | 7.21 |
yellow bio iso | 0.081 | 0.187 | 5.23 | 0.00821 |
yellow bio iso S | 0.174 | 0.386 | 0.498 | 5.37 |
yellow bio iso temp | 0.0741 | 0.168 | 1.62 | 0.00262 |
yellow bio iso temp S | 0.206 | 0.424 | 0.324 | 4.38 |
yellow bio HJ | 0.0351 | 0.102 | 1.69 | 0.00176 |
yellow bio HJ S | 0.112 | 0.46 | 0.37 | 2.91 |
yellow bio HJ temp | 0.0324 | 0.0912 | 5.14 | 0.00055 |
yellow bio HJ temp S | 0.12 | 0.4 | 0.209 | 2.05 |
yellow bio HJ GI | 0.0503 | 0.0134 | 0.000732 | 0.13 |
yellow bio HJ GI S | 0.177 | 0.251 | 0.368 | 6.9 |
yellow bio HJ GI temp | 0.0316 | 0.00819 | 0.000313 | 0.0629 |
yellow bio HJ GI temp S | 0.299 | 0.177 | 0.473 | 7.21 |
yellow bio HJ iso | 0.0809 | 0.187 | 5.13 | 0.00814 |
yellow bio HJ iso S | 0.169 | 0.392 | 0.493 | 5.4 |
yellow bio HJ iso temp | 0.074 | 0.168 | 1.59 | 0.0026 |
yellow bio HJ iso temp S | 0.202 | 0.428 | 0.319 | 4.39 |
yellow TL | 0.0303 | 0.0308 | 1.63 | 0.000763 |
yellow TL S | 0.457 | 0.377 | 0.431 | 32.6 |
yellow TL temp | 0.0229 | 0.0251 | 4.55 | 0.000253 |
yellow TL temp S | 0.328 | 0.281 | 0.242 | 26.5 |
yellow TL GI | 0.00345 | 0.38 | 4.84 | 0.0256 |
yellow TL GI S | 0.35 | 0.299 | 0.496 | 43.7 |
yellow TL GI temp | 0.00196 | 0.372 | 2.04 | 0.0129 |
yellow TL GI temp S | 0.481 | 0.311 | 0.326 | 44.9 |
yellow TL iso | 0.0249 | 0.0412 | 3.78 | 0.00193 |
yellow TL iso S | 0.488 | 0.424 | 0.469 | 44.7 |
yellow TL iso temp | 0.0186 | 0.0335 | 1.06 | 0.000636 |
yellow TL iso temp S | 0.353 | 0.353 | 0.294 | 39.2 |
yellow TL HJ | 0.0303 | 0.0308 | 1.58 | 0.000756 |
yellow TL HJ S | 0.474 | 0.351 | 0.407 | 33.8 |
yellow TL HJ temp | 0.0229 | 0.0251 | 4.43 | 0.000251 |
yellow TL HJ temp S | 0.334 | 0.266 | 0.227 | 26.9 |
yellow TL HJ GI | 0.00345 | 0.38 | 4.82 | 0.0254 |
yellow TL HJ GI S | 0.35 | 0.298 | 0.495 | 43.6 |
yellow TL HJ GI temp | 0.00196 | 0.372 | 2.03 | 0.0128 |
yellow TL HJ GI temp S | 0.481 | 0.31 | 0.325 | 44.7 |
yellow TL HJ iso | 0.0249 | 0.0412 | 3.69 | 0.00191 |
yellow TL HJ iso S | 0.493 | 0.416 | 0.463 | 45.1 |
yellow TL HJ iso temp | 0.0186 | 0.0335 | 1.04 | 0.00063 |
yellow TL HJ iso temp S | 0.355 | 0.346 | 0.289 | 39.4 |
yellow TL bio | 0.324 | 0.335 | 0.0114 | 5.54 |
yellow TL bio S | 0.373 | 0.496 | 0.323 | 51.3 |
yellow TL bio temp | 0.332 | 0.335 | 0.00786 | 4.56 |
yellow TL bio temp S | 0.399 | 0.474 | 0.425 | 63.1 |
yellow TL bio GI | 0.472 | 0.446 | 0.0126 | 6.64 |
yellow TL bio GI S | 0.126 | 0.278 | 0.323 | 59.4 |
yellow TL bio GI temp | 0.452 | 0.444 | 0.0093 | 5.88 |
yellow TL bio GI temp S | 0.183 | 0.283 | 0.433 | 77.6 |
yellow TL bio iso | 0.435 | 0.446 | 0.0158 | 8.4 |
yellow TL bio iso S | 0.349 | 0.492 | 0.326 | 64.5 |
yellow TL bio iso temp | 0.444 | 0.445 | 0.0108 | 6.82 |
yellow TL bio iso temp S | 0.404 | 0.499 | 0.423 | 77.2 |
yellow TL bio HJ | 0.322 | 0.333 | 0.0111 | 5.5 |
yellow TL bio HJ S | 0.332 | 0.461 | 0.343 | 54.5 |
yellow TL bio HJ temp | 0.331 | 0.333 | 0.00769 | 4.53 |
yellow TL bio HJ temp S | 0.369 | 0.447 | 0.444 | 66.0 |
yellow TL bio HJ GI | 0.472 | 0.446 | 0.0126 | 6.61 |
yellow TL bio HJ GI S | 0.126 | 0.277 | 0.323 | 59.3 |
yellow TL bio HJ GI temp | 0.453 | 0.445 | 0.00928 | 5.85 |
yellow TL bio HJ GI temp S | 0.183 | 0.281 | 0.434 | 77.4 |
yellow TL bio HJ iso | 0.433 | 0.444 | 0.0155 | 8.36 |
yellow TL bio HJ iso S | 0.339 | 0.499 | 0.33 | 65.5 |
yellow TL bio HJ iso temp | 0.442 | 0.443 | 0.0106 | 6.8 |
yellow TL bio HJ iso temp S | 0.395 | 0.492 | 0.428 | 78.4 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandora, M. Multiverse Predictions for Habitability: Number of Potentially Habitable Planets. Universe 2019, 5, 157. https://doi.org/10.3390/universe5060157
Sandora M. Multiverse Predictions for Habitability: Number of Potentially Habitable Planets. Universe. 2019; 5(6):157. https://doi.org/10.3390/universe5060157
Chicago/Turabian StyleSandora, McCullen. 2019. "Multiverse Predictions for Habitability: Number of Potentially Habitable Planets" Universe 5, no. 6: 157. https://doi.org/10.3390/universe5060157