Geometric Operators in the Einstein–Hilbert Truncation
Abstract
:1. Introduction
2. Geometric Operators in Asymptotic Safety
2.1. Volume of Hypersurfaces in Spacetime
2.2. The Geodesic Length
3. The Effective Average Action and Geometric Operators
3.1. The Einstein–Hilbert Truncation for the EAA
3.2. Geometric Operators as Composite Operators
4. Scaling Properties of Geometric Operators
4.1. Volume of Hypersurfaces
4.1.1. Scaling of at One-Loop
4.1.2. Scaling of in the Full-Fledge Einstein–Hilbert Truncation
4.1.3. Scaling of in the Improved Einstein–Hilbert Truncation
4.2. The Geodesic Length and Its Uses
4.2.1. The Geodesic Length
- (i)
- (ii)
- (iii)
- Normalized initial value problem at fixed geodesic length. One requires that the solution of Equation (21) satisfies
4.2.2. The Geodesic Ball and the Geodesic Sphere
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weinberg, S. General Relativity, an Einstein Centenary Survey; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: New York, NY, USA, 1980; p. 790. [Google Scholar]
- Reuter, M. Nonperturbative Evolution Equation for Quantum Gravity. Phys. Rev. D 1998, 57, 971. [Google Scholar] [CrossRef]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Manrique, E.; Reuter, M. Bare Action and Regularized Functional Integral of Asymptotically Safe Quantum Gravity. Phys. Rev. D 2009, 79, 025008. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Renormalization group improved black hole space-times. Phys. Rev. D 2000, 62, 043008. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Cosmology of the Planck era from a renormalization group for quantum gravity. Phys. Rev. D 2002, 65, 043508. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Entropy signature of the running cosmological constant. J. Cosmol. Astropart. Phys. 2007, 2007, 024. [Google Scholar] [CrossRef]
- Koch, B.; Saueressig, F. Structural aspects of asymptotically safe black holes. Class. Quant. Grav. 2014, 31, 015006. [Google Scholar] [CrossRef]
- Bonanno, A.; Saueressig, F. Asymptotically safe cosmology—A status report. Comptes Rendus Phys. 2017, 18, 254–264. [Google Scholar] [CrossRef]
- Bonanno, A.; Platania, A.; Saueressig, F. Cosmological bounds on the field content of asymptotically safe gravity–matter models. Phys. Lett. B 2018, 784, 229–236. [Google Scholar] [CrossRef]
- Ellwanger, U. FLow equations for N point functions and bound states. Z. Phys. C 1994, 62, 503–510. [Google Scholar] [CrossRef]
- Morris, T.R. The Exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 1994, 9, 2411–2419. [Google Scholar] [CrossRef]
- Lauscher, O.; Reuter, M. Flow equation of quantum Einstein gravity in a higher derivative truncation. Phys. Rev. D 2002, 66, 025026. [Google Scholar] [CrossRef]
- Reuter, M.; Saueressig, F. A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior. Phys. Rev. D 2002, 66, 125001. [Google Scholar] [CrossRef]
- Codello, A.; Percacci, R.; Rahmede, C. Ultraviolet properties of f(R)-gravity. Int. J. Mod. Phys. A 2008, 23, 143–150. [Google Scholar] [CrossRef]
- Codello, A.; Percacci, R.; Rahmede, C. Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation. Ann. Phys. 2009, 324, 414–469. [Google Scholar] [CrossRef]
- Benedetti, D.; Machado, P.; Saueressig, F. Asymptotic safety in higher-derivative gravity. Mod. Phys. Lett. A 2009, 24, 2233–2241. [Google Scholar] [CrossRef]
- Benedetti, D.; Groh, K.; Machado, P.; Saueressig, F. The Universal RG Machine. J. High Energy Phys. 2011, 2011, 079. [Google Scholar] [CrossRef]
- Ohta, N.; Percacci, R. Higher Derivative Gravity and Asymptotic Safety in Diverse Dimensions. Class. Quant. Grav. 2014, 31, 015024. [Google Scholar] [CrossRef]
- Benedetti, D. On the number of relevant operators in asymptotically safe gravity. Europhys. Lett. 2013, 102, 20007. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Knorr, B.; Lippoldt, S.; Saueressig, F. Gravitational Two-Loop Counterterm Is Asymptotically Safe. Phys. Rev. Lett. 2016, 116, 211302. [Google Scholar] [CrossRef] [PubMed]
- Falls, K.; Litim, D.; Nikolakopoulos, K.; Rahmede, C. Further evidence for asymptotic safety of quantum gravity. Phys. Rev. D 2016, 93, 104022. [Google Scholar] [CrossRef] [Green Version]
- Ohta, N.; Percacci, R.; Vacca, G. Flow equation for f(R) gravity and some of its exact solutions. Phys. Rev. D 2015, 92, 061501. [Google Scholar] [CrossRef]
- Falls, K.; Litim, D.; Nikolakopoulos, K.; Rahmede, C. On de Sitter solutions in asymptotically safe f(R) theories. arXiv, 2016; arXiv:1607.04962. [Google Scholar] [CrossRef]
- Falls, K.; Ohta, N. Renormalization Group Equation for f(R) gravity on hyperbolic spaces. Phys. Rev. D 2016, 94, 084005. [Google Scholar] [CrossRef]
- Reuter, M.; Weyer, H. Conformal sector of Quantum Einstein Gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance. Phys. Rev. D 2009, 80, 025001. [Google Scholar] [CrossRef]
- Benedetti, D.; Caravelli, F. The Local potential approximation in quantum gravity. J. High Energy Phys. 2012, 2012, 017. [Google Scholar] [CrossRef]
- Demmel, M.; Saueressig, F.; Zanusso, O. Fixed-Functionals of three-dimensional Quantum Einstein Gravity. J. High Energy Phys. 2012, 2012, 131. [Google Scholar] [CrossRef]
- Dietz, J.; Morris, T. Asymptotic safety in the f(R) approximation. J. High Energy Phys. 2013, 2013, 108. [Google Scholar] [CrossRef]
- Bridle, I.H.; Dietz, J.A.; Morris, T.R. The local potential approximation in the background field formalism. J. High Energy Phys. 2014, 2014, 093. [Google Scholar] [CrossRef]
- Dietz, J.A.; Morris, T.R. Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety. J. High Energy Phys. 2013, 2013, 064. [Google Scholar] [CrossRef]
- Demmel, M.; Saueressig, F.; Zanusso, O. RG flows of Quantum Einstein Gravity on maximally symmetric spaces. J. High Energy Phys. 2014, 2014, 026. [Google Scholar] [CrossRef]
- Demmel, M.; Saueressig, F.; Zanusso, O. RG flows of Quantum Einstein Gravity in the linear-geometric approximation. Ann. Phys. 2015, 359, 141. [Google Scholar] [CrossRef]
- Demmel, M.; Saueressig, F.; Zanusso, O. A proper fixed functional for four-dimensional Quantum Einstein Gravity. J. High Energy Phys. 2015, 2015, 113. [Google Scholar] [CrossRef]
- Ohta, N.; Percacci, R.; Vacca, G.P. Renormalization Group Equation and scaling solutions for f(R) gravity in exponential parametrization. Eur. Phys. J. C 2016, 76, 46. [Google Scholar] [CrossRef]
- Labus, P.; Morris, T.R.; Slade, Z.H. Background independence in a background dependent renormalization group. Phys. Rev. D 2016, 94, 024007. [Google Scholar] [CrossRef] [Green Version]
- Dietz, J.A.; Morris, T.R.; Slade, Z.H. Fixed point structure of the conformal factor field in quantum gravity. Phys. Rev. D 2016, 94, 124014. [Google Scholar] [CrossRef] [Green Version]
- Knorr, B. Infinite order quantum-gravitational correlations. arXiv, 2017; arXiv:1710.07055. [Google Scholar] [CrossRef]
- Falls, K.G.; King, C.S.; Litim, D.F.; Nikolakopoulos, K.; Rahmede, C. Asymptotic safety of quantum gravity beyond Ricci scalars. arXiv, 2017; arXiv:1801.00162. [Google Scholar] [CrossRef]
- Alkofer, N.; Saueressig, F. Asymptotically safe f(R)-gravity coupled to matter I: the polynomial case. arXiv, 2018; arXiv:1802.00498. [Google Scholar] [CrossRef]
- Manrique, E.; Reuter, M. Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety. Ann. Phys. 2010, 325, 785–815. [Google Scholar] [CrossRef]
- Manrique, E.; Reuter, M.; Saueressig, F. Matter Induced Bimetric Actions for Gravity. Ann. Phys. 2011, 326, 440–462. [Google Scholar] [CrossRef]
- Manrique, E.; Reuter, M.; Saueressig, F. Bimetric Renormalization Group Flows in Quantum Einstein Gravity. Ann. Phys. 2011, 326, 463–485. [Google Scholar] [CrossRef]
- Becker, D.; Reuter, M. En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions. Ann. Phys. 2014, 350, 225–301. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, N.; Litim, D.F.; Pawlowski, J.M.; Rodigast, A. Fixed points and infrared completion of quantum gravity. Phys. Lett. B 2014, 728, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Codello, A.; D’Odorico, G.; Pagani, C. Consistent closure of renormalization group flow equations in quantum gravity. Phys. Rev. D 2014, 89, 081701. [Google Scholar] [CrossRef]
- Christiansen, N.; Knorr, B.; Pawlowski, J.M.; Rodigast, A. Global Flows in Quantum Gravity. Phys. Rev. D 2016, 93, 044036. [Google Scholar] [CrossRef]
- Christiansen, N.; Knorr, B.; Meibohm, J.; Pawlowski, J.M.; Reichert, M. Local Quantum Gravity. Phys. Rev. D 2015, 92, 121501. [Google Scholar] [CrossRef]
- Knorr, B.; Lippoldt, S. Correlation functions on a curved background. Phys. Rev. D 2017, 96, 065020. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, N.; Falls, K.; Pawlowski, J.M.; Reichert, M. Curvature dependence of quantum gravity. Phys. Rev. D 2018, 97, 046007. [Google Scholar] [CrossRef]
- Eichhorn, A.; Labus, P.; Pawlowski, J.M.; Reichert, M. Effective universality in quantum gravity. arXiv, 2018; arXiv:1804.00012. [Google Scholar] [CrossRef]
- Pagani, C.; Reuter, M. Composite Operators in Asymptotic Safety. Phys. Rev. D 2017, 95, 066002. [Google Scholar] [CrossRef]
- Pagani, C.; Reuter, M. Finite Entanglement Entropy in Asymptotically Safe Quantum Gravity. J. High Energy Phys. 2018, 2018, 039. [Google Scholar] [CrossRef]
- Carlip, S. Dimension and Dimensional Reduction in Quantum Gravity. Class. Quant. Grav. 2017, 34, 193001. [Google Scholar] [CrossRef]
- Ambjørn, J.; Durhuus, B.; Jonsson, T. Quantum Geometry: A Statistical Field Theory Approach; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Hamber, H.W. Quantum Gravitation: The Feynman Path Integral Approach; Springer: Berlin, Germany, 2009. [Google Scholar]
- Codello, A.; D’Odorico, G. Scaling and Renormalization in two dimensional Quantum Gravity. Phys. Rev. D 2015, 92, 024026. [Google Scholar] [CrossRef]
- Reuter, M.; Wetterich, C. Quantum Liouville field theory as solution of a flow equation. Nucl. Phys. B 1997, 506, 483–520. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Saueressig, F. Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data. J. High Energy Phys. 2011, 2011, 012. [Google Scholar] [CrossRef]
- Pawlowski, J.M. Aspects of the functional renormalisation group. Ann. Phys. 2007, 322, 2831–2915. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, Y.; Itoh, K.; Sonoda, H. Realization of Symmetry in the ERG Approach to Quantum Field Theory. Prog. Theor. Phys. Suppl. 2010, 181, 1–166. [Google Scholar] [CrossRef]
- Pagani, C. Note on scaling arguments in the effective average action formalism. Phys. Rev. D 2016, 94, 045001. [Google Scholar] [CrossRef] [Green Version]
- Pagani, C.; Sonoda, H. Products of composite operators in the exact renormalization group formalism. Prog. Theor. Exp. Phys. 2018, 2018, 023B02. [Google Scholar] [CrossRef]
- Becker, M.; Pagani, C. Geometric Operators in Asymptotic Safety. Phys. Rev. D 2019, 99, 066002. [Google Scholar] [CrossRef]
- Pagani, C. Functional Renormalization Group approach to the Kraichnan model. Phys. Rev. E 2015, 92, 033016. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.; Saueressig, F. Quantum Gravity and the Functional Renormalization Group—The Road towards Asymptotic Safety; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Percacci, R. An Introduction to Covariant Quantum Gravity and Asymptotic Safety; World Scientific: Singapore, 2017. [Google Scholar]
- Litim, D.F. Optimized renormalization group flows. Phys. Rev. D 2001, 64, 105007. [Google Scholar] [CrossRef]
- Daum, J.E.; Reuter, M. Renormalization Group Flow of the Holst Action. Phys. Lett. B 2012, 710, 215–218. [Google Scholar] [CrossRef]
- Daum, J.E.; Reuter, M. Einstein-Cartan gravity, Asymptotic Safety, and the running Immirzi parameter. Ann. Phys. 2013, 334, 351–419. [Google Scholar] [CrossRef]
- Pagani, C.; Percacci, R. Quantization and fixed points of non-integrable Weyl theory. Class. Quant. Grav. 2014, 31, 115005. [Google Scholar] [CrossRef] [Green Version]
- Pagani, C.; Percacci, R. Quantum gravity with torsion and non-metricity. Class. Quant. Grav. 2015, 32, 195019. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Schollmeyer, G.M. The metric on field space, functional renormalization, and metric–torsion quantum gravity. Ann. Phys. 2016, 367, 125–191. [Google Scholar] [CrossRef] [Green Version]
- Manrique, E.; Rechenberger, S.; Saueressig, F. Asymptotically Safe Lorentzian Gravity. Phys. Rev. Lett. 2011, 106, 251302. [Google Scholar] [CrossRef] [PubMed]
- Rechenberger, S.; Saueressig, F. A functional renormalization group equation for foliated spacetimes. J. High Energy Phys. 2013, 2013, 010. [Google Scholar] [CrossRef]
- Biemans, J.; Platania, A.; Saueressig, F. Quantum gravity on foliated spacetimes: Asymptotically safe and sound. Phys. Rev. D 2017, 95, 086013. [Google Scholar] [CrossRef] [Green Version]
- Biemans, J.; Platania, A.; Saueressig, F. Renormalization group fixed points of foliated gravity-matter systems. J. High Energy Phys. 2017, 2017, 093. [Google Scholar] [CrossRef]
- Houthoff, W.B.; Kurov, A.; Saueressig, F. Impact of topology in foliated Quantum Einstein Gravity. Eur. Phys. J. C 2017, 77, 491. [Google Scholar] [CrossRef] [PubMed]
- Tsamis, N.C.; Woodard, R.P. Physical Green’s Functions in Quantum Gravity. Ann. Phys. 1992, 215, 96–155. [Google Scholar] [CrossRef]
- Fröb, M.B. One-loop quantum gravitational corrections to the scalar two-point function at fixed geodesic distance. Class. Quant. Grav. 2018, 35, 035005. [Google Scholar] [CrossRef] [Green Version]
- Gray, A. The volume of a small geodesic ball of a Riemannian manifold. Mich. Math. J. 1974, 20, 329–344. [Google Scholar] [CrossRef]
- Becker, D.; Reuter, M. Towards a C-function in 4D quantum gravity. J. High Energy Phys. 2015, 2015, 065. [Google Scholar] [CrossRef]
- Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R. Nonperturbative Quantum Gravity. Phys. Rept. 2012, 519, 127–210. [Google Scholar] [CrossRef]
1 | See [4] for a more detailed discussion on this point. |
2 | From here on the dot denotes the DeWitt summation and integration convention, e.g., . |
3 | |
4 | This condition is analogous to the condition (iii) that we introduced in Section 4.2.1. |
0.0682 | 0.0671 | |
0.5455 | 0.5368 | |
1.4318 | 1.4091 |
0.0997 | 0.1006 | |
0.7973 | 0.8044 | |
2.0930 | 2.1116 |
0 | 0 | |
0.5303 | 0.5692 | |
1.5908 | 1.7076 |
0.0474 | 0.3794 | 0.9959 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, M.; Pagani, C. Geometric Operators in the Einstein–Hilbert Truncation. Universe 2019, 5, 75. https://doi.org/10.3390/universe5030075
Becker M, Pagani C. Geometric Operators in the Einstein–Hilbert Truncation. Universe. 2019; 5(3):75. https://doi.org/10.3390/universe5030075
Chicago/Turabian StyleBecker, Maximilian, and Carlo Pagani. 2019. "Geometric Operators in the Einstein–Hilbert Truncation" Universe 5, no. 3: 75. https://doi.org/10.3390/universe5030075
APA StyleBecker, M., & Pagani, C. (2019). Geometric Operators in the Einstein–Hilbert Truncation. Universe, 5(3), 75. https://doi.org/10.3390/universe5030075