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Abstract: We review the study of the scaling properties of geometric operators, such as the geodesic
length and the volume of hypersurfaces, in the context of the Asymptotic Safety scenario for quantum
gravity. We discuss the use of such operators and how they can be embedded in the effective
average action formalism. We report the anomalous dimension of the geometric operators in
the Einstein–Hilbert truncation via different approximations by considering simple extensions of
previous studies.
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1. Introduction

In the Asymptotic Safety (AS) scenario, gravity is quantized in a quantum field theoretic
framework [1]. In this approach a fundamental quantum field theory of gravity is defined thanks to
the presence of an ultraviolet-attractive non-Gaussian fixed point with a finite number of relevant
directions [1,2]. Thanks to such a fixed point the theory is predictive up to arbitrarily small length scales.

The AS fixed point has non-perturbative nature and to probe its existence one must resort to
non-perturbative techniques. A promising approach to investigate such a research line has been laid
down in [2] by Martin Reuter. In [2] a functional renormalization group (FRG) flow equation for
quantum gravity was derived in terms of the so-called effective average action (EAA) [3], which is
a scale dependent generalization of the usual effective action. The EAA realizes the Wilsonian
renormalization program by suppressing the momentum modes below a scale k. Furthermore, the EAA
interpolates between the microscopic action (k→ ∞ limit1) and the quantum effective action (k→ 0
limit). Thus, by lowering the scale k, one can perform a piecemeal functional integral for quantum
gravity that can be employed to make actual predictions.

From a more phenomenological viewpoint, quantum gravity effects are supposed to be significant
from energies higher than the Planck mass so that natural places to look for such effects are the
cosmology of the early universe and black hole physics. The AS scenario for quantum gravity has
opened new possibilities in these fields and led to new insights, (see e.g., [5–10]).

Even if the scale dependence of the EAA is governed by an exact equation [3,11,12], the latter can
be solved by implementing some approximation scheme. The gravitational extension of the EAA
allows one to use this framework to investigate the presence of a suitable fixed point for the AS scenario
for quantum gravity [2]. Strong evidence for the presence of such a fixed point has been found in a
large number of approximation schemes. In particular, the AS fixed point has been consistently found
in various types of truncations, which include higher curvature terms [13–20], the Goroff–Sagnotti
counterterm [21], and polynomials of the Ricci scalar of high order [22–25]. Furthermore, approximation

1 See [4] for a more detailed discussion on this point.
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schemes involving infinite dimensional truncations have been studied [26–40]. Finally, also ansätze that
take into account the bimetric character of the EAA have been investigated in various settings [41–51].

However, even in the presence of a suitable fixed point, further effort is often needed to make
contact with gravitational observables [52,53]. The reason for this is that on top of the EAA, one needs
to make contact with geometric operators such as the geodesic length. (See [52] for a discussion in
the AS framework.) Such geometric operators are not generally present in any truncation for the
EAA, which is built as a functional of (quasi)local operators. To circumvent this difficulty, one can
consider geometric operators as composite operators, which are renormalized over and above the
standard EAA.

In this work we review the study of certain geometric operators and report the scaling properties of
geodesics and the volume of hypersurfaces by considering simple extensions of previous works. The
paper is organized as follows. In Section 2 we introduce and discuss the geometric operators of interest.
In Section 3 we discuss the Einstein–Hilbert truncation and how to compute the scaling properties of
geometric operators. In Section 4 we report the values of the anomalous dimensions of the geometric
operators. Finally, we summarize the paper in Section 5.

2. Geometric Operators in Asymptotic Safety

In this section, we introduce the geometric operators that we study in this work and outline their
possible use in the AS scenario for quantum gravity.

2.1. Volume of Hypersurfaces in Spacetime

Let us consider the volume of an n-dimensional submanifold, which we denote by σn and that is
embedded into the d-dimensional spacetime manifold M. Let us also assume that σn can be covered by
a single chart. The n-dimensional hypersurface σn is parametrized by n coordinates, which we denote
by ua, with a = 1, · · · , n. The hypersurface is then characterized by a map xµ (u). The induced metric
on σn is given by the pullback of the manifold metric, that is

gab (u) = gµν (x (u))
∂xµ (u)

∂ua
∂xν (u)

∂ub , (1)

where gab is the metric on σn. The volume of the submanifold σn can then be written as

Vσn ≡
∫

σn

√
x∗g =

∫
U

dnu
√

det g(u) . (2)

As an example, for n = 1 Equation (2) reproduces the length of a given curve xµ (u):

Vσ1 =
∫

du
√

gµν (x (u)) ẋµ (u) ẋν (u) .

Dealing with such geometric objects, it is natural to ask what kind of behavior the volume Vσn

possesses at the quantum level. Let us assume that the volume is characterized by an externally
prescribed length L. At the classical level we expect that Vσn ∼ Ln. However, quantum fluctuation
may change this expectation, so that on general grounds one imagines

〈Vσn〉 ∼ Ln−γσn , (3)

where γσn is an anomalous dimension associated with Vσn . The (approximate) computation of γσn will
be given in Section 4. Given the scaling (3) one can also express the scaling of 〈Vσn〉 via ` ≡ 〈Vσ1〉:

〈Vσn〉 ∼ `
n−γσn
1−γσ1 . (4)
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Even if the averages (3) and (4) are not diffeomorphism invariant observables, one may suspect
that such geometric quantities still carry certain features of AS. In this respect, we shall see that
explicit computations give γσn > 0. From such values of the anomalous dimension and the relation
〈Vσn〉 ∼ Ln−γσn one infers that AS typically implies an effective dimensional reduction of the scaling
properties of spacetime. Similar dimensional reduction phenomena are a feature common to several
quantum gravity scenarios [54].

2.2. The Geodesic Length

As mentioned in the introduction, to make contact with diffeomorphism invariant observables one
has often to resort to non-local operators. As an example of such an observable, let us consider the
correlation function of two operators at fixed geodesic length. This is defined by (see e.g., [55,56])

G (r) =
〈 ∫

ddx
√

g (x)
∫

ddy
√

g (y)O1 (x)O2 (y) δ
(
r− `g (x, y)

)〉
, (5)

where `g (x, y) is the geodesic length. We will define `g (x, y) precisely later. For the time being,
we wish to emphasize that the correlation function defined in (5) crucially depends also on the
geodesic length, which is an operator that does not appear in any truncation for the gravitational EAA.

Along lines similar to those reported in [57], let us now provide an argument that allows one to
deduce the scaling behavior of G (r). This argument has the purpose to show the key role played by
the scaling properties of the operators involved in the definition (5), including the geodesic length.
We have

G12 (λr) =
〈 1

Vol

∫
x,y

√
gxO1 (x)

√
gyO2 (y) δ

(
`g (x, y)− λr

)〉
=

1
Z

∫
Dg e−S

∫
x,y

1
Vol
√

gxO1 (x)
√

gyO2 (y) δ
(
`g (x, y)− λr

)
=

〈 ∫
x,y

Ω∆g
Vol−∆g

1−∆g
2

Vol
√

gxO1 (x)
√

gyO2 (y) δ

(
Ω
−∆g

dg `g (x, y)− λr
)〉

(6)

=
〈

λ

∆
g
1+∆

g
2−∆

g
Vol

∆
g
dg

∫
x,y

√
gxO1 (x)

√
gyO2 (y) δ

(
λ`g (x, y)− λr

)〉

= λ

∆
g
1+∆

g
2−∆

g
Vol

∆
g
dg

−1

G12 (r) ,

where Z is the partition function, and Vol is the volume operator, i.e.,
∫ √

g. Setting λ = r−1 in
Equation (6) one obtains the scaling behavior of the correlation function G (r). Let us spell out the
steps that lead to Equation (6). After having rewritten the average via a path integral in the second
line, we performed a dummy change of variables. In particular, we performed a scale transformation
characterized by a parameter Ω and assumed being in the fixed-point regime, where all operators
transform homogeneously under a scale transformation. The parameter Ω is then chosen to satisfy

Ω
−∆g

dg = λ so that the λ can be pulled out of the functional Dirac delta.
A few comments are in order. First, we wish to emphasize that the above argument is a

qualitative one and that it may not be complete. In particular, we implicitly assumed a scale
invariant measure of the path integral. However, the transformation properties of the measure
are known to play an important role in two-dimensional gravity, see [52,57,58] for an FRG perspective
on these issues. Moreover, it must be emphasized that the mass dimensions ∆i are the full
quantum scaling dimensions of the operators involved. This implies that ∆i are not the classical
(engineering) dimensions, but that the classical scaling is corrected by an anomalous dimension.
This latter anomalous dimension must be computed explicitly, even for non-local operators like the
geodesic length.
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There are also further geometric operators that encode information about the structure of spacetime.
Of particular interest is the volume of a geodesic ball since its scaling 〈Vball (r)〉 ∼ rdH is characterized
by the Hausdorff dimension dH of the spacetime, (see e.g., [59]).

In Sections 3 and 4 we show that both the scaling properties of the geodesic length and the
volume of hypersurface can be studied by suitably extending the EAA.

3. The Effective Average Action and Geometric Operators

3.1. The Einstein–Hilbert Truncation for the EAA

In the EAA formalism one realizes the Wilsonian renormalization program by introducing a scale
k below which the integration of momentum modes is suppressed. Such suppression is implemented
by adding to the classical action the so-called cutoff action ∆Sk. The cutoff action is quadratic in the
quantum fields χ and is characterized by a suitable kernelRk, i.e., ∆Sk [χ] =

1
2

∫
χRkχ.

One can then introduce the modified generating functional for the connected correlation functions
Wk [J] via

eWk [J] ≡
∫
Dχ e−S[χ]−∆Sk [χ]+J·χ . (7)

The EAA is then defined as the Legendre transform of Wk [J] after the subtraction of the cutoff
term, i.e., by Γk [ϕ] = J · ϕ−Wk [J]− ∆Sk [ϕ].2 The scale dependence of the EAA is governed by the
following exact equation [3,11,12]

∂tΓk =
1
2

Tr
[(

Γ(2)
k +Rk

)−1
∂tRk

]
, (8)

where Γ(2)
k denotes the Hessian of the effective average action and t ≡ log k.

Equation (8) can be solved after implementing some approximation scheme, such as expanding
the EAA in a finite number of monomials:

Γk ≡
m

∑
i=1

gi Mi ,

where Mi ∈
{∫ √

g,
∫ √

gR, · · ·
}

. In this work we shall consider the so-called Einstein–Hilbert
truncation, which is defined by

Γk [g] =
1

16πGk

∫
ddx
√

g (2Λk − R) . (9)

Employing the background field method, the ansatz (9) is equipped with a gauge-fixing term and
the associated ghosts. In particular we will work in the Feynman-de Donder gauge, (see e.g., [16]).
Note also that (9) is a single metric ansatz, which is defined as a functional of the metric gµν = ḡµν + hµν

with ḡµν being the background metric and hµν being the average fluctuating metric. In full generality,
however, the EAA is expected to be a generic functional of ḡµν and hµν due to the breaking of the split
symmetry, i.e., Γk [ḡ, h].

3.2. Geometric Operators as Composite Operators

We now consider the following situation. Let us suppose that we have been able to compute the
EAA within a certain approximation. We ask ourselves how one could extract information regarding
operators not included in the EAA. A possible way to tackle this situation is to consider an extended

2 From here on the dot denotes the DeWitt summation and integration convention, e.g., J · ϕ =
∫

x Ji (x) ϕi (x).
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version of the EAA in which new sources conjugated to the operators of interest are introduced.
More precisely one defines the following modified generating functional Wk [J, ε] via

eWk [J,ε] ≡
∫
Dχ e−S[χ]−∆Sk [χ]+J·χ−ε·O . (10)

Equation (10) differs from (8) only in the last term of the argument of the exponential. The EAA is
then defined as usual via Γk [ϕ, ε] = J · ϕ−Wk [J, ε]− ∆Sk [ϕ], where no Legendre transform has been
implemented on the sources εi (x).

By taking functional derivatives with respect to the source εi (x) one obtains information regarding
the insertion of a composite operator:

〈Oi (x)〉J = − δWk [J, ε]

δεi (x)

∣∣∣∣∣
ε=0

,

where the index i = 1, · · · , N labels the N composite operators which we wish to consider. Clearly,
the same information is also encoded in the source dependent EAA. One then defines the composite
operator [Oi] by taking a functional derivative with respect to the associated source:

[Ok(x)]i ≡
δ

δεi(x)
Γk [ϕ, ε]

∣∣∣
ε=0

= 〈Oi (x)〉J[ϕ] .

The so defined composite operator satisfies its own flow equation, which is given by [60–63]:

∂t (ε · [Ok]) = −1
2

Tr
[(

Γ(2)
k +Rk

)−1 (
ε · [Ok]

(2)
) (

Γ(2)
k +Rk

)−1
∂tRk

]
, (11)

where [Ok]
(2) is the Hessian of the composite operator.

To solve Equation (11) one must implement some approximations. A possible strategy is to project
the composite operator [Ok] on the truncated set of operators {O1, · · · , ON}:

[Ok (x)] =
N

∑
j=1

Zij (k)Oj (x) . (12)

In practical calculations we will limit ourselves to non-mixing ansätze, where the composite
operator is parametrized by

[Ok (x)] = Z (k)O (x) , (13)

where Z (k) encodes the RG evolution of the operator. The scaling dimension associated with the
ansatz (13) can be used to estimate the scaling dimension ∆O of the operator O (x) via

∆O = dO + γO ,

where dO is the classical mass dimension of the operator O (x) and γO ≡ Z−1
O ∂tZO.3

3 Similar non-mixing ansätze have been already employed in the literature [52,64,65].
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We are now in the position of discussing the application of this framework to investigate
the scaling properties of geometric operators. Let us consider the case of the volume of an
n-dimensional hypersurface:

Vσn =
∫

U
dnu

√
det g(u) .

To introduce Vσn in our formalism we add to the microscopic action the following source
dependent term: ∫

U dnu ε (u)
√

det g(u) .

Using a non-mixing ansatz for the source dependent EAA, we add the following term to the
Einstein-Hilber truncation for Γk [g]:∫

U dnu ε (u) Zσn (k)
√

det g(u) . (14)

In the case of a non-mixing ansatz for Vσn we can also simply set ε (u) to a constant and keep it as a
bookkeeping parameter. Inserting the ansatz (14) into Equation (11) it is straightforward to rewrite the
flow equation for composite operators as

γσn Vσn = −1
2

Tr
[(

Γ(2)
k +Rk

)−1 (
V(2)

σn

) (
Γ(2)

k +Rk

)−1
∂tRk

]
, (15)

which is expressed directly in terms of the anomalous dimension. In this approximation, the anomalous
dimension associated with Vσn is given by γσn ≡ Z−1

σn ∂tZσn . Since the classical mass dimension of Vσn

is dσn = −n, we have that the full scaling dimension reads ∆σn = −n + γσn , which implies an effective
reduction of the scaling dimension if γσn > 0.

4. Scaling Properties of Geometric Operators

4.1. Volume of Hypersurfaces

In this section, we study the anomalous scaling of hypersurfaces in the Einstein–Hilbert truncation
by varying the approximations employed and the field content considered.

The Einstein–Hilbert truncation (9) and the associated running given by the flow Equation (8) has
been studied several times in the literature, see [66,67] for an overview. Depending on certain choices,
such as cutoff profile and gauge-fixing, one obtains different values of the Newton’s constant and the
cosmological constant. The values of the couplings at the fixed point are not physical quantities and
typically vary by changing the aforementioned choices. However, such dependences should cancel in
actual observable quantities, such as the critical exponents. Of course, when approximations are made,
one only expects that the calculation of physical quantities is at best only weakly influenced by these
choices, such as that of the cutoff profile.

The anomalous dimension, being related to physical quantities, is also expected to be
independent of unphysical choices. In this section we evaluate the anomalous dimension in various
settings. Given that the truncations for the gravitational EAA and the composite operators are very
crude, the framework employed in this work is purely exploratory. Despite this fact we expect to be
able to grasp the qualitative feature encoded in the anomalous dimensions. As we shall see, the main
feature of all the anomalous dimensions computed in this work is that their value is always positive,
thus hinting to an effective dimensional reduction of the scaling dimension of the geometric operators.
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Given the Einstein–Hilbert truncation and the non-mixing ansatz for the volume of a hypersurface,
one can explicitly compute the RHS of Equation (15). The details of the calculation can be found in [64].
The resulting flow equation is given by [64]:

γσn (λk, gk) ≡ γσn (k) = 2
(

1
4π

) d
2−1 [ (d + 1)n2 − 2n

d
+

4n− 2n2

2d− d2

]
(16)

×gk

[
Φ2

d/2(−2λk)−
1
2

ηN(gk, λk)Φ̃
2
d/2(−2λk)

]
,

where gk ≡ Gkkd−2 and λk ≡ Λkk−2 are the dimensionless Newton’s and cosmological constants and
we have introduced the threshold functions [2]:

Φp
n (w) ≡ 1

Γ(n)

∫ ∞

0
dz zn−1 R(0)(z)− zR(0)′(z)[

z + R(0)(z) + w
]p and (17)

Φ̃p
n(w) ≡ 1

Γ(n)

∫ ∞

0
dz zn−1 R(0)(z)[

z + R(0)(z) + w
]p . (18)

The RHS of Equation (16) can be evaluated in several ways. In particular, in Section 4.1.1
we compute the anomalous dimensions in the one-loop approximation, also considering the possible
addition of matter fields. In Section 4.1.2 we compute the anomalous dimensions in the full-fledged
single metric truncation and report explicit values for the cases d = 3 and d = 4. Finally, we compute
the value of the anomalous dimensions in a bimetric setting by taking into account the graviton
anomalous dimension in Section 4.1.3.

Explicit values are obtained using the optimized cutoff Rk =
(
∆− k2) θ

(
∆− k2) [68] and the

exponential cutoff Rk = s∆/
(

es∆/k2 − 1
)

. By computing the anomalous dimensions via different
cutoff profiles one can estimate the uncertainty due to the cutoff choice. This gives an approximate
lower bound of the error associated with the obtained value for γσn . A further estimate of the error
can be found by comparing the results obtained by systematically enlarging the truncation for the
EAA and/or the composite operators. We emphasize that in a non-perturbative framework such as
the FRG, such a procedure may in principle change rather drastically the numerical values of γσn with
respect to those obtained in the following, which are based on a crude approximation scheme and vary
over a significant range when comparing the results of Sections 4.1.1, 4.1.2, and 4.1.3. For this reason,
our work has an exploratory nature rather than a quantitative one.

4.1.1. Scaling of Vσn at One-Loop

In the one-loop approximation the RHS of Equation (16) is computed as follows. First one sets the
anomalous dimension ηN to zero. Moreover, one performs a coupling expansion to the first non-trivial
order. In practice this boils down to evaluate only the threshold functional Φ at a vanishing value of
the cosmological constant.

We now evaluate the anomalous dimensions γσn via this approximation in various settings.
Pure gravity in d = 4. In Table 1 we report the values of the one-loop fixed-point anomalous

dimensions γσn . The uncertainty due to the cutoff choice is roughly the 3% of the anomalous dimension.

Table 1. Fixed-point values of γσn for d = 4. The first and second column report the results obtained
via the optimized and the exponential cutoff, respectively.

γ
opt,1L
σn (gopt,1L

∗ ) γ
exp,1L
σn (gexp,1L

∗ )

n = 1 0.0682 0.0671
n = 2 0.5455 0.5368
n = 3 1.4318 1.4091
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Pure gravity in d = 3. The one-loop expression for γσn is particularly simple due to a cancellation
between the dependence of both g∗ and the RHS of (16) on the threshold functions. One finds

γσn =
n (n− 1)

5
.

Gravity in d = 4 with matter fields. We now report the one-loop fixed-point value of the anomalous
dimension γσn when matter fields are added. Following the nomenclature of [16] we employ type II
cutoffs for all matter fields. Using the optimized cutoff, one finds

γσn =
12π

22 + 4nV − nS − 2nD
· n (3n− 2)

8π
. (19)

The anomalous dimension (19) is proportional to the fixed-point Newton’s constant. Please note
that for certain choices of matter content, i.e., of (nV , nS, nD), the fixed-point Newton’s constant can
be even negative, implying that γσn is negative in this case, too. However, one requires that the AS
fixed point has a positive Newton’s constant. This requirement gives a non-trivial constraint on the
matter content compatible with the AS scenario, we refer to [67] for a more detailed discussion of these
issues. In the present case a positive value of the fixed-point Newton’s constant implies a positive
value of γσn .

4.1.2. Scaling of Vσn in the Full-Fledge Einstein–Hilbert Truncation

Let us go back to the RHS of Equation (16). We now consider that ηN = ∂tGk/Gk = 2− d at the
fixed point. We report below the results for the pure gravity case in d = 3 and d = 4.

Pure gravity in d = 4. In Table 2 we report the fixed-point values of the anomalous dimensions
of hypersurfaces. We checked that by varying the s parameter in the exponential cutoff that the
anomalous dimensions vary at most by 3% with respect to their values.

Table 2. Fixed-point values of γσn in d = 4 for the full-fledged single metric Einstein–Hilbert truncation.

γ
opt
σn (λ

opt
∗ , gopt

∗ ) γ
exp
σn (λ

exp
∗ , gexp

∗ )

n = 1 0.0997 0.1006
n = 2 0.7973 0.8044
n = 3 2.0930 2.1116

Pure gravity in d = 3. The values of the anomalous dimension are reported in Table 3.
(The uncertainty due to the choice of the cutoff profile is estimated to be of the order of 6%.)

Table 3. Fixed-point values of γσn in d = 3 in the full-fledged Einstein–Hilbert truncation.

γ
opt
σn (λ

opt
∗ , gopt

∗ ) γ
exp
σn (λ

exp
∗ , gexp

∗ )

n = 1 0 0
n = 2 0.5303 0.5692
n = 3 1.5908 1.7076

We note that in this approximation the anomalous dimensions are larger than the one-loop ones of
Section 4.1.1.

4.1.3. Scaling of Vσn in the Improved Einstein–Hilbert Truncation

We now consider the Einstein–Hilbert truncation (9) and redefine the fluctuating metric via
hµν →

√
32πGkZ1/2

k hµν, where we have introduced a wave function renormalization constant Zk for
the graviton which is independent of the Newton’s constant. Employing this definition allows one to
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make a first distinction between the zero level couplings, i.e., the couplings associated with Γk [ḡ, 0],
and the level two couplings, which are related to δ2

δhδh Γk [ḡ, 0].
The difference with respect to the ansatz of section 4.1.2 is that now the anomalous dimension

ηN is not determined by the Newton’s constant but it is calculated independently by computing
ηN = −Z−1

k ∂tZk. The fixed-point value of the graviton anomalous dimension has already been
computed via slightly different procedures in the literature, (see e.g., [67] for an overview). In Table 4
we report the values of the anomalous dimensions γσn found in this approximation by using the
fixed-point coupling constants and anomalous dimension given in [67].

Table 4. Fixed-point values of γσn for d = 4 using the graviton anomalous dimension computed via
ηN = −Z−1

k ∂tZk.

γ
opt
σ1 (gopt

∗ ) γ
opt
σ2 (gopt

∗ ) γ
opt
σ3 (gopt

∗ )

0.0474 0.3794 0.9959

From the values in Table 4 we can see that the anomalous dimensions γσn at the fixed point are
always positive with a smaller value compared to those of Section 4.1.2.

Finally, it would be interesting to extend the present results to other kinds of gravitational
theories, such as those with an independent connection, that have shown compatibility with the
AS program [69–78].

4.2. The Geodesic Length and Its Uses

4.2.1. The Geodesic Length

In this section, we study the scaling property of the geodesic length `g, which is defined by

`g ≡
∫ 1

0
dτ
√

gµν

(
xg (τ)

)
ẋµ

g (τ) ẋν
g (τ) , (20)

where the trajectory xµ
g (τ) satisfies the following equation

ẍµ
g (τ) + Γ µ

α β

(
xg(τ)

)
ẋα

g (τ) ẋβ
g (τ) = 0 . (21)

We emphasize that the so defined trajectory xµ
g (τ) has an implicit, i.e., functional, dependence on

the metric gµν. Because of this, the length `g has further new “graviton vertices” with respect to the
case of the length ` of a prescribed trajectory, which we have considered in Section 4.1.

It is important to note that to fully specify the trajectory xµ
g (τ) it is necessary to state which

boundary/initial conditions are associated to Equation (21). Let us describe three sensible options.

(i) Boundary value problem. One requires that the solution of Equation (21) satisfies{
xµ (0) = xµ

0

xµ (1) = xµ
1 .

(22)

(ii) Initial value problem. One requires that the solution of Equation (21) satisfies{
xµ (0) = xµ

0

ẋµ (0) = vµ
0 .

(23)
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(iii) Normalized initial value problem at fixed geodesic length. One requires that the solution of
Equation (21) satisfies 

xµ (0) = xµ
0

ẋµ(0)
‖ẋ0‖

= ξ
µ
0

`g(x0, xg(1)) = r .

(24)

In the following we will limit ourselves to discuss the case of the boundary conditions (22) and
will comment on the other cases at the end of the section. It must be stressed that boundary conditions
are taken to be independent from the metric, i.e., there is no implicit (functional) metric dependence in
xµ

0 and xµ
1 .

The crucial feature of the flow Equation (11) is the presence of the Hessian of the composite
operator on the RHS. In full analogy with Equation (15), one must solve the following equation

γ`g`g = −1
2

Tr
[(

Γ(2)
k +Rk

)−1 (
`
(2)
g

) (
Γ(2)

k +Rk

)−1
∂tRk

]
. (25)

In the present case, thus, we must compute the Hessian of the geodesic length. We now summarize
the strategy adopted in [64] and refer the reader to [64] for further details.

To compute the Hessian of `g one must know the dependence of xµ
g (τ) on the fluctuation hµν.

We work on a flat background, i.e., ḡµν = δµν, and expand the geodesic trajectory as follows

xµ
g (τ) = xµ

0

[
h0
]
(τ) + xµ

1 [h] (τ) +
1
2

xµ
2

[
h2
]
(τ) + · · · , (26)

where xµ
1 [h] is linear in hµν, xµ

2
[
h2] is quadratic in hµν and so on. The explicit expression for xµ

i can be
found as follows. First one expands the connection in the geodesic equation up to the desired order, in
our case

ẍµ
g (τ) +

(
Γ µ

α β

∣∣∣
ḡ=δ

+ δΓ µ
α β

∣∣∣
ḡ=δ

+
1
2

δ2Γ µ
α β

∣∣∣
ḡ=δ

)
ẋα

g (τ) ẋβ
g (τ) = 0 . (27)

One then inserts the expansion (26) into (27) and solves the equation order by order. This procedure
is straightforward. The only caveat is that one must ensure the boundary conditions (22) are satisfied
at each order. For example, the solution of the zeroth order term is trivial, one has

ẍµ
0 (τ) = 0

xµ
0 (τ) = xµ

0 + ξ
µ
0 τ ,

with ξ
µ
0 = xµ

1 − xµ
0 .

To extract the anomalous dimension from Equation (25) we project onto flat space, i.e., we set ḡµν =

δµν and hµν = 0. The LHS of (25) is thus simply proportional to `g=δ =
√

δµνξ
µ
0 ξν

0 . The anomalous
dimension is then determined by extracting the terms proportional to ξ0 in the RHS of (25).

An explicit computation shows that among all the terms on the RHS, those proportional to ξ0

are the ones that come from the explicit dependence of the metric in (20). No contributions actually
come from the graviton vertices of xµ

g (τ). The latter induce mixing with other operators which are
neglected in our simple non-mixing ansatz. It follows that the relevant contributions are the same
as the ones relevant for a generic length `. In turn, all of this implies that in our approximation the
anomalous dimension of `g is the same as that of ` = Vσ1 . Therefore, for the geodesic length with
boundary conditions one has γ`g = γσ1 and that the results found in Sections 4.1.1–4.1.3 apply to `g as
well.

Finally, let us come back to the choice of initial/boundary condition. Following the arguments
in [64], it is possible to check that also in the case of the initial value problem defined by (23) one
has γ`g = γσ1 . However, an explicit calculation shows that the Hessians of `g associated with the
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boundary and the initial value problems are different. Therefore, one expects their scaling properties
to be different in general and this difference to be grasped by employing more refined mixing ansätze
for the composite operators.

Finally, let us consider the normalized initial value problem defined by (24). This case is very
different from the previous ones. In particular, due to the third equation in (24), the trajectory xµ

g (τ)

is such that `g = r, where r is a given number which is independent of the metric. It follows that no
anomalous dimension is associated with `g since the latter is taken to be a given number by definition.
Such a definition has been used in the literature to define another kind of geodesic fixed correlation
length [79,80], which should not be confused with the correlation defined by (5) which employs a
boundary value problem. This last example clarifies that to study the scaling properties of the geodesic
length one must carefully define how the geodesic trajectory is actually defined and in particular
which type of boundary or initial conditions one wants to employ.

4.2.2. The Geodesic Ball and the Geodesic Sphere

We now consider further geometric operators, which can be defined thanks to the geodesic distance.
Let us start by considering the volume of a geodesic ball. We locate the center of the ball at a point

xµ
0 , which we take as a given condition independent of the metric. The volume of the geodesic ball is

defined by

Vball (r) ≡
∫

B
ddx
√

g ,

where the domain of integration is

B ≡
{

x : `g (x, x0) ≤ r
}

. (28)

In (28) `g (x, x0) denotes the geodesic distance between x0 and x while r is a given number, which is
independent of the metric.4

The volume of the geodesic ball can be expressed as an expansion in r around r = 0 (see e.g., [81]):

Vball (r) =
2Γ
(

1
2

)d

dΓ
(

d
2

) {rd − R (x0)

6 (d + 2)
rd+2 + · · ·

}
. (29)

We are particularly interested in the small r limit, since the latter is related to the Hausdorff
dimension dH via the following scaling relation [59]

lim
r→0
〈Vball (r)〉 ∼ rdH .

Given the expansion (29) one may suspect that only the first term is relevant. If we assume that this
is the case one immediately obtains that dH = d since 〈rd〉 = rd due to the fact that r is a given number
independent of the metric. In this case, thus, one finds that the Hausdorff dimension corresponds to
the topological dimension.

To inspect if the other terms in (29) are negligible we estimate the contribution of the second term.
To do so we employ a sort of mean field analysis where 〈O

(
gµν

)
〉 ≈ O

(
gsc

k,µν

)
, with gsc

k,µν being the
so-called self-consistent metric [82]. In the UV regime one then has

〈R (x0) rd+2〉 ∼ rd (kr)2 ,

4 This condition is analogous to the condition (iii) that we introduced in Section 4.2.1.
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which blows up like k2 for k → ∞ and vanishes like rd+2 in the limit r → 0. It follows that the
higher curvature terms in (29) are negligible if kr � 1. The condition kr � 1 actually corresponds to
require that the ball radius is inside the range of lengths that have been integrated out by the RG flow,
i.e., 0� r � k−1. This is a physical requirement since only in this way the ball is affected by all the
relevant modes. This argument thus confirms that the leading contribution to 〈Vball〉 is proportional to
rd so that dH = d. The relation dH = d was already known in the AS literature via a different argument,
we refer the reader to [59] for further details.

It is straightforward to extend these considerations to the volume of a geodesic sphere, which is
defined as the set of points that satisfies `g (x, x0) = r. In this case, one has

Vsphere (r) =
2Γ
(

1
2

)d

Γ
(

d
2

) {
rd−1 − R (x0)

6d
rd+1 + · · ·

}
.

In the small r limit one then obtains 〈Vsphere〉 ∼ rd−1.

5. Summary

In this paper, we reviewed the role of geometric operators in the AS scenario for quantum gravity
and described how one can study the scaling properties of such operators in the framework of
the functional renormalization group. We have also reported on the study of the anomalous
dimensions of geometric operators under certain approximations that have not been considered
in the literature before.

In particular, in Section 2 we introduced the volume of hypersurfaces and the geodesic length and
discussed their possible use in the AS scenario for quantum gravity. In Section 3 we introduced the
Einstein–Hilbert truncation for the gravitational EAA and discussed how to study geometric operators
as composite operators in the FRG framework. In Section 4 we studied the scaling properties of the
composite operators in different settings. It turns out that under all the approximations considered the
anomalous dimensions are positive implying an effective reduction of the scaling properties of the
geometric operators. Finally, the scaling properties of a geodesic ball have been investigated and it has
been argued that the Hausdorff dimension corresponds to the topological one in the AS scenario.

We emphasize, however, that the nature of the present study is exploratory. To reach a quantitative
determination of the scaling properties one should extend our study by considering increasingly
complicated truncations for the EAA and introducing mixing ansätze for the composite operators.
It follows that more work is needed in this direction to be able to possibly make comparisons with
other approaches to quantum gravity. Indeed, the study of geometric operators paves the way to the
study of observables such as the correlation function defined in (5), which one may hope to compare
with results from other approaches, such as Causal Dynamical Triangulations [83].
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