Next Article in Journal / Special Issue
Spontaneous CPT Violation and Quantum Anomalies in a Model for Matter–Antimatter Asymmetry in the Cosmos
Previous Article in Journal / Special Issue
Hellenic Lyceum Cosmic Observatories Network: Status Report and Outreach Activities
 
 
universe-logo
Article Menu

Article Menu

Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Result on the Neutrinoless Double Beta Decay Search of 82Se with the CUPID-0 Experiment

by
Fabio Bellini
1,2,*,
Oscar Azzolini
3,
Maria Teresa Barrera
3,
Jeffrey Beeman
4,
Mattia Beretta
5,6,
Matteo Biassoni
6,
Chiara Brofferio
5,6,
Carlo Bucci
7,
Lucia Canonica
8,
Silvia Capelli
5,6,
Laura Cardani
2,
Paolo Carniti
5,6,
Nicola Casali
2,
Lorenzo Cassina
5,6,
Massimiliano Clemenza
5,6,
Oliverio Cremonesi
6,
Angelo Cruciani
2,
Antonio D’Addabbo
7,9,
Ioan Dafinei
2,
Sergio Di Domizio
10,11,
Fernando Ferroni
2,9,
Luca Gironi
5,6,
Andrea Giuliani
12,13,
Paolo Gorla
7,
Claudio Gotti
5,6,
Giorgio Keppel
3,
Maria Martinez
14,
Silvio Morganti
2,
Sergei Nagorny
4,
Massimiliano Nastasi
5,6,
Stefano Nisi
7,
Claudia Nones
15,
Donato Orlandi
7,
Lorenzo Pagnanini
5,6,
Marco Pallavicini
9,10,
Vincenzo Palmieri
4,†,
Luca Pattavina
8,16,
Maura Pavan
5,6,
Gianluigi Pessina
6,
Valerio Pettinacci
2,
Stefano Pirro
7,
Stefano Pozzi
5,6,
Ezio Previtali
6,
Andrei Puiu
5,6,
Claudia Rusconi
7,17,
Karoline Schäffner
7,9,
Claudia Tomei
2,
Marco Vignati
2 and
Anastasia Zolotarova
15
add Show full author list remove Hide full author list
1
Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
2
INFN, Sezione di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
3
INFN Laboratori Nazionali di Legnaro, I-35020 Legnaro (Pd), Italy
4
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5
Dipartimento di Fisica, Università di Milano Bicocca, I-20126 Milano, Italy
6
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy
7
INFN Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy
8
Physik Department, Technische Universität München, D85748 Garching, D-80805 München, Germany
9
Gran Sasso Science Institute, 67100 L’Aquila, Italy
10
Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
11
INFN Sezione di Genova, I-16146 Genova, Italy
12
CNRS/CSNSM, Centre de Sciences Nucléaires et de Sciences de la Matière, 91405 Orsay, France
13
DISAT, Università dell’Insubria, 22100 Como, Italy
14
Fundacion ARAID and U. Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
15
IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
16
Max-Planck-Institut für Physik, D-80805 München, Germany
17
Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA
*
Author to whom correspondence should be addressed.
Deceased.
Universe 2019, 5(1), 2; https://doi.org/10.3390/universe5010002
Submission received: 30 November 2018 / Revised: 17 December 2018 / Accepted: 17 December 2018 / Published: 22 December 2018

Abstract

:
CUPID-0 is the first large array of scintillating Zn 82 Se cryogenic calorimeters (bolometers) implementing particle identification for the search of the neutrinoless double beta decay (0 ν β β ). The detector consists of 24 enriched Zn 82 Se bolometers for a total 82 Se mass of 5.28 kg and it has been taking data in the underground LNGS (Italy) since March 2017. In this article we show how the dual read-out provides a powerful tool for the α particles rejection. The simultaneous use of the heat and light information allows us to reduce the background down to (3.2 1.1 + 1.3 )×10 3 counts/(keV kg year), an unprecedented level for cryogenic calorimeters. In a total exposure of 5.46 kg year Zn 82 Se we set the most stringent limit on the 0 ν β β decay 82 Se half-life T 1 / 2 0 ν > 4.0 × 10 24 year at 90% C.I.
PACS:
07.20.Mc; 23.40.-s; 21.10.Tg; 14.60.Pq; 27.60.+j

1. Introduction

The neutrinoless double beta deca 0 ν β β [1] is a transition, in which a nucleus (A, Z) decays into its isobar (A, Z + 2) with the simultaneous emission of two electrons. Both the parent and the daughter nucleus must be more bound than the intermediate one (A, Z + 1) in order to avoid the occurrence of the sequence of two single beta decays. Such a condition, due to the pairing term, is fulfilled in nature for 35 even-even nuclei [2]. This process violates the lepton number by two units; it’s not allowed by the Standard Model of interactions but it’s envisaged in many of its extensions in which neutrinos are their own antiparticles [2]. Its discovery would establish unambiguously the nature of neutrinos as Majorana fermions [3]. In the standard paradigma [2,4] the decay is mediated only by the exchange of three virtual light neutrinos between two charged weak interaction vertices. The chirality mismatch imposed by the V-A structure of the ElectroWeak theory leads to an amplitude proportional to a linear combination of the three neutrino masses. Their squared mass differences are known from neutrino oscillation experiments Δ m 12 2 = m ν 2 2 m ν 1 2 7 × 10 5 eV 2 , Δ m 23 2 = m ν 3 2 m ν 2 2 2 × 10 3 eV 2 [4,5,6] and their sum is constrained to be less than 0.66 eV at 95% C.L. from cosmological observations but the absolute scale is still unknown [4,5,6]. Three possible orderings are therefore conceivable: normal hierarchy (NH), in which m ν 1 <m ν 2 <m ν 3 , inverted hierarchy (IH) where m ν 3 <m ν 1 <m ν 2 , and the quasi-degenerate hierarchy (QD), for which masses differences are tiny compared to their absolute values.
At present, no 0 ν β β evidence has been found and actual limits on the decay half-life, in the range of (10 24 –10 26 ) years [5,6,7,8,9,10,11,12,13], are probing the QD region. The main signature of the 0 ν β β decay is a peak in the sum energy spectrum of the electrons at the Q-value of the reaction which must be resolved over a continuous background [5]. In order to completely explore the IH region ( τ 10 27 28 years), new technologies must be developed, able to reduce the specific background close to zero at the ton × year exposure scale in combination with a sensitive mass of hundreds of kg of isotope and a FWHM energy resolution better than 0.5 % [5,14].
Cryogenic calorimeters (usually called bolometers) play an important role in this field of research [15,16] and in this contribution we review the most recent results obtained by the CUPID-0 experiment.

2. The Detector

A bolometer [17,18] is a single crystal calorimeter operating at ∼10 mK in which the temperature increase, following an energy release inside the crystal itself, is picked-up by a highly sensitive thermometer. This technology allows us to embed the 0 ν β β source in the detector itself and it exhibits excellent energy resolution and very high detection efficiency. One-Ton scale detectors composed of a thousand bolometers could be successfully operated as demonstrated by the CUORE experiment [11,19]. The CUORE sensitivity is limited by the residual background generated by energy-degraded α particles emitted by surface contaminations of the detector material. To suppress α particles the CUPID-0 experiment makes use of scintillating bolometers [20,21,22] in which a small fraction of the released energy is converted into scintillating light. The light escapes the crystal and it is absorbed by a thin bolometer working as light detector. The dual read-out allows us to identify the particle type because α particles have a different light yield and scintillation time-development compared to iso-energetic electrons [23,24,25,26,27].
The CUPID-0 detector is an array of Zn 82 Se bolometers, enriched in 82 Se at ∼95% [28,29,30]. The isotope under study for the 0 ν β β decay is 82 Se with a Q β β = 2997.9 ± 0.3 keV [31], well above the energy of the most intense natural high-energy 208 Tl γ line at 2615 keV. The 2 ν β β decay of 82 Se, allowed by the Standard Model, has a life time τ 1 / 2 = (9.39 ± 0.17(stat) ± 0.58(syst) ) × 10 19 year [32] longer enough to reduce to a negligible level the background induced by the pile-up of two 2 ν β β events in the region of interest. The array consists of 24 Zn 82 Se crystals for a total mass of 9.65 kg, corresponding to 5.13 kg of 82 Se and two natural ZnSe crystals (40 g of 82 Se mass) not used in the analysis. The number of 82 Se nuclei under investigation is (3.41 ± 0.03) × 10 25 excluding two crystals featuring poor performances. Each Zn 82 Se is held in a copper frame by means of small PTFE supports and surrounded by a 3 M Vikuiti plastic reflector to enhance the light collection. The light detector (LD) is a 170- μ m-thick Ge disk [33] working as a bolometer. One side of the LD is coated with a SiO 60-nm-thick layer to enhance light absorption [34].
Both the LD and Zn 82 are equipped with an NTD -Ge thermistor sensor [35], acting as temperature- voltage transducer, and a Si Joule heater [36], which periodically injects a fixed amount of energy to equalise the bolometer gain [37,38].
The signal, amplified and filtered by a six-pole anti-aliasing active Bessel [39,40,41,42,43,44], is recorded by an 18 bit ADC board operating at 1(2) kSPS for the Zn 82 Se (LD). The detector is anchored to the mixing chamber of an Oxford 1000 3 He/ 4 He dilution refrigerator [45] operating at a temperature of about 10 mK and located in Hall A of the Laboratori Nazionali del Gran Sasso (average depth ∼3650 m water equivalent [46]).
The CUPID-0 detector cool down began in January 2017 and, after a period of commissioning it reached stable data taking beginning in May 2017. Here we report the analysis obtained with an a Zn 82 Se exposure of 5.46 kg year. The results of the first 3.44 kg year data have been published in Ref. [47].

3. Data Analysis and Results

We acquire the complete data stream for both the Zn 82 Se and the light detector. For the ZnSe, we implement a derivative software trigger while pulses produced by the Joule heater are flagged by the data acquisition system. The waveform is analysed 4 s after the trigger and 1 s before (baseline).
We use the optimum filter algorithm [48,49] to infer the pulse amplitude and the shape parameters. The amplitude is corrected for any shift in thermal gain using the reference pulse injected by the heater every 400 s [37] and the baseline to estimate the detector temperature. We find the amplitude-energy conversion using the most intense γ lines produced by a 232 Th source [47,50].
We discard events on the Zn 82 Se inconsistent with the filter signal template and events on different bolometers if they occur within 20 ms since they are most likely induced by multiple Compton γ ’s.
The LD signal amplitude and shape is estimated applying the optimum filter at a fixed time delay compared to the Zn 82 Se heat signal as detailed in Ref. [51]. We build a light shape parameter [27] and we optimize the selection in order to have a unitary efficiency while rejecting the α background and shown in Figure 1. Finally we suppress the background induced by the internal 208 Tl β / β + γ decay to 212 Pb ( τ 1 / 2 = 3.01 min) tagging the 212 Bi ( 208 Tl mother ) which α decays with a Q α = 6207 keV. If the contamination is close to the surface and the α escapes the crystal, only part of the energy of the parent decay is collected. We therefore require the α particle to be in the energy range 2.0–6.5 MeV.
The resulting background index in the region of interest 2800–3200 keV, after the whole selection, results to be BI = (3.2 1.1 + 1.3 ) × 10 3 counts/(keV kg year).
The total efficiency on the signal 0 ν β β candidate is (75 ± 2)%. It comprises the selection efficiency, evaluated on the most prominent peak in the physics spectrum [52], the 65 Zn and the 0 ν β β containment efficiency estimated via GEANT4 simulation. No signal events were found and we set a 90% credibile interval Bayesian lower limit on the 82 Se half life T 1 / 2 0 ν > 4.0 × 10 24 year. Details of the analysis and the procedure used to compute the upper limit can be found in Ref. [47,50].

4. Conclusions

CUPID-0 demonstrates that a large array of enriched scintillating bolometers can be successfully operated. The simultaneous readout of the heat and light signals allows us to reject the α induced background and reach the lowest background level ever achieved with bolometric experiments: (3.2 1.1 + 1.3 ) × 10 3 counts/(keV kg year). This represents a key milestone for the next generation of tonne-scale experiments. In a total exposure of 5.46 kg year Zn 82 Se we set the most stringent limit on the neutrinoless double beta decay 82 Se half-life T 1 / 2 0 ν > 4.0 × 10 24 year at 90% C.I. The data taking is on going and new results will be released in Spring 2019.

Funding

This research was partially supported by the European Research Council (FP7/2007-2013) under Low-background Underground Cryogenic Installation For Elusive Rates Contract No. 247115 and by the INFN (Istituto Nazionale di Fisica Nucleare).

Acknowledgments

We are particularly grateful to M. Iannone for the help in all the stages of the detector construction, A. Pelosi for the construction of the assembly line, M. Guetti for the assistance in the cryogenic operations, R. Gaigher for the calibration system mechanics, M. Lindozzi for the development of cryostat monitoring system, M. Perego for his invaluable help, the mechanical workshop of LNGS (E. Tatananni, A. Rotilio, A. Corsi, and B. Romualdi) for the continuous help in the overall setup design. We acknowledge the Dark Side Collaboration for the use of the low-radon clean room. This work makes use of the DIANA data analysis and APOLLO data acquisition software which has been developed by the CUORICINO, CUORE, LUCIFER, and CUPID-0 Collaborations.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Furry, W.H. On Transition Probabilities in Double Beta-Disintegration. Phys. Rev. 1939, 56, 1184. [Google Scholar] [CrossRef]
  2. Giunti, C.; Kim, C. Fundamentals of Neutrino Physics and Astrophysics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
  3. Schechter, J.; Valle, J.W.F. Neutrinoless double-β decay in SU(2)×U(1) theories. Phys. Rev. D 1982, 25, 2951. [Google Scholar] [CrossRef]
  4. Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. 2018, D98, 030001. [Google Scholar] [CrossRef]
  5. Cremonesi, O.; Pavan, M. Challenges in Double Beta Decay. Adv. High Energy Phys. 2014, 2014, 951432. [Google Scholar] [CrossRef]
  6. Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F. Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2016, 2162659. [Google Scholar] [CrossRef]
  7. Albert, J.B.; Auty, D.J.; Barbeau, P.S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A. Search for Majorana neutrinos with the first two years of EXO-200 data. Nature 2014, 510, 229–234. [Google Scholar] [CrossRef] [Green Version]
  8. Albert, J.B.; Anton, G.; Badhrees, I.; Barbeau, P.S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G.F.; et al. Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector. Phys. Rev. Lett. 2018, 120, 072701. [Google Scholar] [CrossRef] [Green Version]
  9. Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; et al. Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503, Addendum in Phys. Rev. Lett. 2016, 117, 109903, doi:10.1103/PhysRevLett.117.109903.. [Google Scholar] [CrossRef]
  10. Aalseth, C.E.; Abgrall, N.; Aguayo, E.; Alvis, S.I.; Amman, M.; Arnquist, I.J.; Avignone, F.T., III; Back, H.O.; Barabash, A.S.; Barbeau, P.S.; et al. Search for Neutrinoless Double-β Decay in 76Ge with the Majorana Demonstrator. Phys. Rev. Lett. 2018, 120, 132502. [Google Scholar] [CrossRef]
  11. Alduino, C.; Alfonso, K.; Andreotti, E.; Arnaboldi, C.; Azzolini, O.; Bandac, I.; Banks, T.I.; Bari, G.; Barucci, M.; Beeman, J.W. First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130Te. Phys. Rev. Lett. 2018, 120, 132501. [Google Scholar] [CrossRef]
  12. Agostini, M.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S.T.; et al. Background-free search for neutrinoless double-β decay of 76Ge with GERDA. Nature 2017, 544, 47–52. [Google Scholar] [CrossRef] [PubMed]
  13. Agostini, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; et al. Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II. Phys. Rev. Lett. 2018, 120, 132503. [Google Scholar] [CrossRef] [PubMed]
  14. Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Balata, M.; Banks, T.I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; et al. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors. Eur. Phys. J. C 2014, 74, 3096. [Google Scholar] [CrossRef]
  15. Pirro, S.; Mauskopf, P. Advances in Bolometer Technology for Fundamental Physics Advances in Bolometer Technology for Fundamental Physics. Annu. Rev. Nucl. Part Sci. 2017, 67, 161. [Google Scholar] [CrossRef]
  16. Bellini, F. Potentialities of the future technical improvements in the search of rare nuclear decays by bolometers. Int. J. Mod. Phys. 2018, A33, 1843003. [Google Scholar] [CrossRef]
  17. Booth, N.; Cabrera, B.; Fiorini, E. Low Temperature Particle Detectors. Annu. Rev. Nucl. Part Sci. 1996, 46, 471. [Google Scholar] [CrossRef]
  18. Enss, C.; McCammon, D. Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities. J. Low Temp. Phys. 2008, 151, 5. [Google Scholar] [CrossRef]
  19. Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Balata, M.; Banks, T.I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; et al. Searching for neutrinoless double-beta decay of 130Te with CUORE. Adv. High Energy Phys. 2015, 2015, 879871. [Google Scholar] [CrossRef]
  20. Alessandrello, A.; Bashkirov, V.; Brofferio, C.; Bucci, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Gervasio, G.; Giuliani, A.; Nucciotti, A.; et al. A scintillating bolometer for experiments on double beta decay. Phys. Lett. B 1998, 420, 109. [Google Scholar] [CrossRef]
  21. Pirro, S.; Beeman, J.W.; Capelli, S.; Pavan, M.; Previtali, E.; Gorla, P. Scintillating double beta decay bolometers. Phys. Atom. Nucl. 2006, 69, 2109. [Google Scholar] [CrossRef]
  22. Poda, D.; Giuliani, A. Low background techniques in bolometers for double-beta decay search. Int. J. Mod. Phys. A 2017, 32, 1743012. [Google Scholar] [CrossRef] [Green Version]
  23. Gironi, L. Scintillating bolometers for Double Beta Decay search. Nucl. Instrum. Meth. A 2010, 617, 478–481. [Google Scholar] [CrossRef]
  24. Arnaboldi, C.; Capelli, S.; Cremonesi, O.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S. Characterization of ZnSe scintillating bolometers for Double Beta Decay. Astropart. Phys. 2011, 34, 344–353. [Google Scholar] [CrossRef] [Green Version]
  25. Beeman, J.W.; Bellini, F.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Nagorny, S.; et al. Performances of a large mass ZnSe bolometer to search for rare events. J. Instrum. 2013, 8, P05021. [Google Scholar] [CrossRef]
  26. Beeman, J.W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; et al. Current Status and Future Perspectives of the LUCIFER Experiment. Adv. High Energy Phys. 2013, 2013, 237973. [Google Scholar] [CrossRef]
  27. Artusa, D.R.; Balzoni, A.; Beeman, J.W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; et al. First array of enriched Zn82Se bolometers to search for double beta decay. Eur. Phys. J. C 2016, 76, 364. [Google Scholar] [CrossRef] [PubMed]
  28. Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; Capelli, S.; et al. CUPID-0: the first array of enriched scintillating bolometers for 0νββ decay investigations. Eur. Phys. J. 2018, C78, 428. [Google Scholar] [CrossRef]
  29. Dafinei, I.; Nagorny, S.; Pirro, S.; Cardani, L.; Clemenza, M.; Ferroni, F.; Laubenstein, M.; Nisi, S.; Pattavina, L.; Schaeffner, K.; et al. Production of 82Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay. J. Cryst. Growth 2017, 475, 158–170. [Google Scholar] [CrossRef] [Green Version]
  30. Beeman, J.W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; et al. Double-beta decay investigation with highly pure enriched 82Se for the LUCIFER experiment. Eur. Phys. J. 2015, C75, 591. [Google Scholar] [CrossRef]
  31. Lincoln, D.L.; Holt, J.D.; Bollen, G.; Brodeur, M.; Bustabad, S.; Engel, J.; Novario, S.J.; Redshaw, M.; Ringle, R.; Schwarz, S. First Direct Double-Beta Decay Q-value Measurement of 82Se in Support of Understanding the Nature of the Neutrino. Phys. Rev. Lett. 2013, 110, 012501. [Google Scholar] [CrossRef]
  32. Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; et al. Final results on 82Se double beta decay to the ground state of 82Kr from the NEMO-3 experiment. Eur. Phys. J. 2018, C78, 821. [Google Scholar] [CrossRef]
  33. Beeman, J.W.; Bellini, F.; Casali, N.; Cardani, L.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Nagorny, S.; Orio, F.; et al. Characterization of bolometric Light Detectors for rare event searches. J. Instrum. 2013, 8, P07021. [Google Scholar] [CrossRef]
  34. Mancuso, M.; Beeman, J.W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers. EPJ Web Conf. 2014, 65, 04003. [Google Scholar] [CrossRef] [Green Version]
  35. Haller, E.E. Advanced far-infrared detectors. Infrared Phys. Technol. 1994, 35, 127–146. [Google Scholar] [CrossRef] [Green Version]
  36. Andreotti, E.; Brofferio, C.; Foggetta, L.; Giuliani, A.; Margesin, B.; Nones, C.; Pedretti, M.; Rusconi, C.; Salvioni, C.; Tenconi, M. Production, characterization, and selection of the heating elements for the response stabilization of the CUORE bolometers. Nucl. Instrum. Meth. A 2012, 664, 161–170. [Google Scholar] [CrossRef]
  37. Alessandrello, A.; Brofferio, C.; Bucci, C.; Cremonesi, O.; Giuliani, A.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; et al. Methods for response stabilization in bolometers for rare decays. Nucl. Instrum. Meth. A 1998, 412, 454–464. [Google Scholar] [CrossRef]
  38. Alfonso, K.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Pessina, G. A High Precision Pulse Generation and Stabilization System for Bolometric Experiments. J. Instrum. 2018, 13, P02029. [Google Scholar] [CrossRef]
  39. Arnaboldi, C.; Pessina, G. The design of the input stage for the very front-end of the CUORE experiment. J. Low Temp. Phys. 2008, 151, 964–970. [Google Scholar] [CrossRef]
  40. Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G. A low noise and high precision linear power supply with thermal foldback protection. Rev. Sci. Instrum. 2016, 87, 054706. [Google Scholar] [CrossRef]
  41. Arnaboldi, C.; Carniti, P.; Cassina, L.; Gotti, C.; Liu, X.; Maino, M.; Pessina, G.; Rosenfeld, C.; Zhu, B.X. A front-end electronic system for large arrays of bolometers. J. Instrum. 2018, 13, P02026. [Google Scholar] [CrossRef]
  42. Arnaboldi, C.; Pessina, G.; Pirro, S. The cold preamplifier set-up of CUORICINO: Towards 1000 channels. Nucl. Instrum. Meth. A 2006, 559, 826–828. [Google Scholar] [CrossRef]
  43. Arnaboldi, C.; Cariello, M.; Di Domizio, S.; Giachero, A.; Pessina, G. A programmable multichannel antialiasing filter for the CUORE experiment. Nucl. Instrum. Meth. A 2010, 617, 327–328. [Google Scholar] [CrossRef]
  44. Arnaboldi, C.; Baù, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G. Very low noise AC/DC power supply systems for large detector arrays. Rev. Sci. Instrum. 2015, 86, 124703. [Google Scholar] [CrossRef] [PubMed]
  45. Pirro, S. Further developments in mechanical decoupling of large thermal detectors. Nucl. Instrum. Meth. A 2006, 559, 672–674. [Google Scholar] [CrossRef]
  46. Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; et al. Vertical muon intensity measured with MACRO at the Gran Sasso Laboratory. Phys. Rev. D 1995, 52, 3793. [Google Scholar] [CrossRef]
  47. Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; Capelli, S.; et al. First Result on the Neutrinoless Double-β Decay of 82Se with CUPID-0. Phys. Rev. Lett. 2018, 120, 232502. [Google Scholar] [CrossRef]
  48. Gatti, E.; Manfredi, P.F. Processing the signals from solid state detectors in elementary particle physics. Riv. Nuovo Cimento 1986, 9, 1. [Google Scholar] [CrossRef]
  49. Radeka, V.; Karlovac, N. Least-square-error amplitude measurement of pulse signals in presence of noise. Nucl. Instrum. Meth. 1967, 52, 86–92. [Google Scholar] [CrossRef]
  50. Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Bossio, E.; Brofferio, C.; Bucci, C.; Canonica, L.; et al. Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches. Eur. Phys. J. 2018, C78, 734. [Google Scholar] [CrossRef]
  51. Piperno, G.; Pirro, S.; Vignati, M. Optimizing the energy threshold of light detectors coupled to luminescent bolometers. J. Instrum. 2011, 6, P10005. [Google Scholar] [CrossRef]
  52. Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T., III; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersani, A.; et al. Analysis techniques for the evaluation of the neutrinoless double-β decay lifetime in 130Te with the CUORE-0 detector. Phys. Rev. C 2016, 93, 045503. [Google Scholar] [CrossRef]
Figure 1. Light shape parameter as a function of the energy released in the ZnSe (all crystals). The dashed vertical band region identifies the 400 keV region centered around the 82 Se Q β β used for the 0 ν β β analysis and for the background evaluation. The α events are concentrated in the right upper region while β / γ events populate the left lower corner. The Figure is adapted from Ref. [50].
Figure 1. Light shape parameter as a function of the energy released in the ZnSe (all crystals). The dashed vertical band region identifies the 400 keV region centered around the 82 Se Q β β used for the 0 ν β β analysis and for the background evaluation. The α events are concentrated in the right upper region while β / γ events populate the left lower corner. The Figure is adapted from Ref. [50].
Universe 05 00002 g001

Share and Cite

MDPI and ACS Style

Bellini, F.; Azzolini, O.; Teresa Barrera, M.; Beeman, J.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; Capelli, S.; et al. Result on the Neutrinoless Double Beta Decay Search of 82Se with the CUPID-0 Experiment. Universe 2019, 5, 2. https://doi.org/10.3390/universe5010002

AMA Style

Bellini F, Azzolini O, Teresa Barrera M, Beeman J, Beretta M, Biassoni M, Brofferio C, Bucci C, Canonica L, Capelli S, et al. Result on the Neutrinoless Double Beta Decay Search of 82Se with the CUPID-0 Experiment. Universe. 2019; 5(1):2. https://doi.org/10.3390/universe5010002

Chicago/Turabian Style

Bellini, Fabio, Oscar Azzolini, Maria Teresa Barrera, Jeffrey Beeman, Mattia Beretta, Matteo Biassoni, Chiara Brofferio, Carlo Bucci, Lucia Canonica, Silvia Capelli, and et al. 2019. "Result on the Neutrinoless Double Beta Decay Search of 82Se with the CUPID-0 Experiment" Universe 5, no. 1: 2. https://doi.org/10.3390/universe5010002

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop