Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations
Abstract
:1. Introduction
1.1. Mass-Distance Relation from Resolving the Source by Caustics
1.2. Mass-Distance Relation from Parallax Measurements
1.3. Mass-Distance Relation from Detecting Light from the Lens
1.4. Contribution of Unresolved Light Aligned with the Source
- -
- An ambient star, (aligned with source and lens not associated with either)
- -
- a companion to the lens, (separated enough to not affect the lensing effect, while being unresolved)
- -
- a companion to the source, (separated enough to not affect the lensing effect, while being unresolved).
1.5. Constraining Dark Lenses
1.6. Resolving Source and Lens and Measuring Relative Source-Lens Relative Proper Motion
2. A Recipe for Constraining the Light Coming from the Lens with Adaptive Optics
- (1)
- Accurate position of the source star. Using the follow-up data is important to refine the position of the source star. It was done while the star was amplified to minimise potential contribution by blends. Typically with OGLE images we reach mas precision.
- (2)
- Calibration data in JHK. Images collected by the VISTA 4m telescope as part of the VVV survey are excellent [64] but the current interface and data products are not satisfactory. Our approach is to download all VVV data and develop tools to extract data cubes of 6 arcmin centred on the target. Then we perform PSF photometry using PSFEx [65] and SExtractor [66] from the AstrOmatic.net suite of tools. We then calibrate the catalogues using 2MASS both for astrometry and photometry the JHK data.
- (3)
- Source estimates in H and/or K. If the microlensing target has been observed in IR, we extract its photometric light curve. The objective is to have measurements at different levels of amplification to be able to estimate accurately the source in IR bands. In the absence of such IR data, knowing the fitted V, I color of the source and extinction, we derive the color of the source and predict what would be its H and K magnitudes. It is better to stick closer to the observations and if possible, we prefer to avoid the color-transformation step.
- (4)
- Preparing AO observations. First, we have to identify if there are some close stars bright enough to be acting as a natural guide star. They ideally have to be close to the target, 10–15 arcsec at most, while being bright enough to be able to close the adaptive optics loop and obtain diffraction limited images. In practise, it has been possible to use natural guide star for about half of the microlensing targets. We also have to identify stars for tip-tilt correction, but they can be fainter and further away. In the absence of bright natural guide star, it is possible to use at some telescopes (KECK) a laser guide star. We advise to build finding charts (with dimensions and orientation indicated) in the optical and also in the infrared, to be able to identify the field, guide-star, tip-tilt star and target quickly. Because galactic bulge fields are too crowded, we recommend dedicated observations of a dark field to estimate the sky.
- (5)
- Observing strategy for constraining the lens flux. Any information at the subarcsecond level is valuable, even if the conditions are not excellent. Therefore, such measurement can be attempted in any decent observing conditions. In the case of KECK, we would advise to use the WIDE camera (40 arcsec) in order to have VVV stars in the field for calibration. We advise a number of dithered observations, with a step of few arcsec. It should be kept in mind that such cameras usually have fairly large distortion.
- (6)
- Resolving lens and source, measuring the relative proper motion. With very stable PSF as achieved with HST, it is possible to constrain the relative source/lens flux and relative proper motion while not resolving them, as done by [56]. It can be done even if source and lens are separated only a fraction of the FWHM. Given the adaptive optics of PSF stability, we are currently limited to resolving source and lens with a separation of ∼60+ mas. The measurement will be done using for instance the NARROW camera at KECK (10 arcsec field of view). It can be attempted only under best observing conditions, when 45–60 mas images are being obtained.
- (7)
- Data processing. First, it is necessary to correct for the dark current and flat-fields in a standard way. We also need to observe a field with very few or no stars to estimate the sky contribution in the observations. A possibility is to target a dark cloud located about 400 arcsec north and 713 arcsec west of the Center. We then correct the science images. We then correct for the distortion of the images, using accurate maps provided by the observatory for the camera. We then compute an astrometric solution for each image using VVV as a reference and SCAMP [67]. Images are re-gridded and then stacked using SWARP [68].
- (8)
- Data analysis. We perform aperture photometry using the SExtractor package. We then cross-identify the stars observed both by AO and VVV, for example using TOPCAT [69]. We usually are able to calibrate to routinely with the KECK WIDE Camera. With a smaller field of view, it could become tricky since few stars at best might be available, and there is always the risk that one is variable, or that nearby bright stars are contaminating the photometry and making it impractical. Unless we attempt to resolve blended source and lens, we perform aperture photometry to measure the fluxes. It is also possible to perform PSF fitting using some tools such as AIROPA [70].
3. Getting the Mass and Distance to the Lens
3.1. Calculating Extinction to the Source and the Lens
3.2. Using Empirical Mass-Luminosity Relations or Isochrones
3.3. Current Limitations
4. Results
Acknowledgments
Conflicts of Interest
Abbreviations
AO | adaptive optics observations |
FWHM | Ful Width at Half Maximum |
HST | Hubble Space Telescope |
PSF | Point Spread Function |
VVV | VISTA Variables in the Via Lactea, a large infrared survey done with the VISTA 4m telescope |
References
- Mao, S.; Paczynski, B. Gravitational microlensing by double stars and planetary systems. Astrophys. J. 1991, 374, L37–L40. [Google Scholar] [CrossRef]
- Gould, A.; Loeb, A. Discovering planetary systems through gravitational microlenses. Astrophys. J. 1992, 396, 104–114. [Google Scholar] [CrossRef]
- Bennett, D.P.; Rhie, S.H. Detecting Earth-Mass Planets with Gravitational Microlensing. Astrophys. J. 1996, 472, 660–664. [Google Scholar] [CrossRef]
- Lissauer, J.J.; Stewart, G.R. Growth of planets from planetesimals. In Protostars and Planets III; Levy, E.H., Lunine, J.I., Eds.; University of Arizona Press: Tucson, AZ, USA, 1993; pp. 1061–1088. [Google Scholar]
- Ida, S.; Lin, D.N.C. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets. Astrophys. J. 2004, 604, 388–413. [Google Scholar] [CrossRef]
- Beaulieu, J.P.; Bennett, D.P.; Fouqué, P.; Williams, A.; Dominik, M.; Jørgensen, U.G.; Kubas, D.; Cassan, A.; Coutures, C.; Greenhill, J.; et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 2006, 439, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.P.; Bond, I.A.; Udalski, A.; Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Hearnshaw, J.B.; Holderness, S.; Itow, Y.; et al. A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192. Astrophys. J. 2008, 684, 663–683. [Google Scholar] [CrossRef]
- Muraki, Y.; Han, C.; Bennett, D.P.; Suzuki, D.; Monard, L.A.G.; Street, R.; Jorgensen, U.G.; Kundurthy, P.; Skowron, J.; Becker, A.C.; et al. Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star. Astrophys. J. 2011, 741, 22. [Google Scholar] [CrossRef]
- Kubas, D.; Beaulieu, J.P.; Bennett, D.P.; Cassan, A.; Cole, A.; Lunine, J.; Marquette, J.B.; Dong, S.; Gould, A.; Sumi, T.; et al. A frozen super-Earth orbiting a star at the bottom of the main sequence. Astron. Astrophys. 2012, 540, A78. [Google Scholar] [CrossRef]
- Shvartzvald, Y.; Yee, J.C.; Calchi Novati, S.; Gould, A.; Lee, C.U.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B.S.; Henderson, C.B.; et al. An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf. Astrophys. J. Lett. 2017, 840, L3. [Google Scholar] [CrossRef]
- Sumi, T.; Bennett, D.P.; Bond, I.A.; Udalski, A.; Batista, V.; Domodellingik, M.; Fouqué, P.; Kubas, D.; Gould, A.; Macintosh, B.; et al. A Cold Neptune-Mass Planet OGLE-2007-BLG-368Lb: Cold Neptunes Are Common. Astrophys. J. 2010, 710, 1641–1653. [Google Scholar] [CrossRef]
- Sumi, T.; Udalski, A.; Bennett, D.P.; Gould, A.; Poleski, R.; Bond, I.A.; Skowron, J.; Rattenbury, N.; Pogge, R.W.; Bensby, T.; et al. The First Neptune Analog or Super-Earth with a Neptune-like Orbit: MOA-2013-BLG-605Lb. Astrophys. J. 2016, 825, 112. [Google Scholar] [CrossRef]
- Street, R.A.; Udalski, A.; Calchi-Novati, S.; Hundertmark, M.P.G.; Zhu, W.; Gould, A.; Yee, J.; Tsapras, Y.; Bennett, D.P.; RoboNet Project, T.; et al. Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk. Astrophys. J. 2016, 819, 93. [Google Scholar] [CrossRef]
- Miyake, N.; Sumi, T.; Dong, S.; Street, R.; Mancini, L.; Gould, A.; Bennett, D.P.; Tsapras, Y.; Yee, J.C.; Albrow, M.D.; et al. A Sub-Saturn Mass Planet, MOA-2009-BLG-319Lb. Astrophys. J. 2011, 728, 120. [Google Scholar] [CrossRef]
- Bachelet, E.; Shin, I.G.; Han, C.; Fouqué, P.; Gould, A.; Menzies, J.W.; Beaulieu, J.P.; Bennett, D.P.; Bond, I.A.; Dong, S.; et al. MOA 2010-BLG-477Lb: Constraining the Mass of a Microlensing Planet from Microlensing Parallax, Orbital Motion, and Detection of Blended Light. Astrophys. J. 2012, 754, 73. [Google Scholar] [CrossRef]
- Janczak, J.; Fukui, A.; Dong, S.; Monard, L.A.G.; Kozłowski, S.; Gould, A.; Beaulieu, J.P.; Kubas, D.; Marquette, J.B.; Sumi, T.; et al. Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely to be in the Galactic Bulge. Astrophys. J. 2010, 711, 731–743. [Google Scholar] [CrossRef]
- Batista, V.; Beaulieu, J.P.; Gould, A.; Bennett, D.P.; Yee, J.C.; Fukui, A.; Gaudi, B.S.; Sumi, T.; Udalski, A. MOA-2011-BLG-293Lb: First Microlensing Planet Possibly in the Habitable Zone. Astrophys. J. 2014, 780, 54. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Bennett, D.P.; Anderson, J.; Bond, I.A.; Gould, A.; Batista, V.; Beaulieu, J.P.; Fouqué, P.; Marquette, J.B.; Pogge, R. The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star. Astron. J. 2017, 154, 59. [Google Scholar] [CrossRef]
- Ryu, Y.H.; Yee, J.C.; Udalski, A.; Bond, I.A.; Shvartzvald, Y.; Zang, W.; Figuera Jaimes, R.; Jørgensen, U.G.; Zhu, W.; Huang, C.X.; et al. OGLE-2016-BLG-1190Lb: The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary. Astron. J. 2018, 155, 40. [Google Scholar] [CrossRef]
- Gaudi, B.S.; Bennett, D.P.; Udalski, A.; Gould, A.; Christie, G.W.; Maoz, D.; Dong, S.; McCormick, J.; Szymański, M.K.; Tristram, P.J.; et al. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing. Science 2008, 319, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.P.; Rhie, S.H.; Nikolaev, S.; Gaudi, B.S.; Udalski, A.; Gould, A.; Christie, G.W.; Maoz, D.; Dong, S.; McCormick, J.; et al. Masses and Orbital Constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn Analog Planetary System. Astrophys. J. 2010, 713, 837–855. [Google Scholar] [CrossRef]
- Han, C.; Jung, Y.K.; Udalski, A.; Sumi, T.; Gaudi, B.S.; Gould, A.; Bennett, D.P.; Tsapras, Y.; Szymański, M.K.; Kubiak, M.; et al. Microlensing Discovery of a Tight, Low-mass-ratio Planetary-mass Object around an Old Field Brown Dwarf. Astrophys. J. 2013, 778, 38. [Google Scholar] [CrossRef]
- Beaulieu, J.P.; Bennett, D.P.; Batista, V.; Fukui, A.; Marquette, J.B.; Brillant, S.; Cole, A.A.; Rogers, L.A.; Sumi, T.; Abe, F.; et al. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets. Astrophys. J. 2016, 824, 83. [Google Scholar] [CrossRef]
- Bennett, D.P.; Rhie, S.H.; Udalski, A.; Gould, A.; Tsapras, Y.; Kubas, D.; Bond, I.A.; Greenhill, J.; Cassan, A.; Rattenbury, N.J.; et al. The First Circumbinary Planet Found by Microlensing: OGLE-2007-BLG-349L(AB)c. Astron. J. 2016, 152, 125. [Google Scholar] [CrossRef]
- Street, R.A.; Choi, J.Y.; Tsapras, Y.; Han, C.; Furusawa, K.; Hundertmark, M.; Gould, A.; Sumi, T.; Bond, I.A.; Wouters, D.; et al. MOA-2010-BLG-073L: An M-dwarf with a Substellar Companion at the Planet/Brown Dwarf Boundary. Astrophys. J. 2013, 763, 67. [Google Scholar] [CrossRef]
- Ranc, C.; Cassan, A.; Albrow, M.D.; Kubas, D.; Bond, I.A.; Batista, V.; Beaulieu, J.P.; Bennett, D.P.; Dominik, M.; Dong, S.; et al. MOA-2007-BLG-197: Exploring the brown dwarf desert. Astron. Astrophys. 2015, 580, A125. [Google Scholar] [CrossRef]
- Bachelet, E.; Fouqué, P.; Han, C.; Gould, A.; Albrow, M.D.; Beaulieu, J.P.; Bertin, E.; Bond, I.A.; Christie, G.W.; Heyrovský, D.; et al. A brown dwarf orbiting an M-dwarf: MOA 2009-BLG-411L. Astron. Astrophys. 2012, 547, A55. [Google Scholar] [CrossRef]
- Bennett, D.P.; Batista, V.; Bond, I.A.; Bennett, C.S.; Suzuki, D.; Beaulieu, J.P.; Udalski, A.; Donatowicz, J.; Bozza, V.; Abe, F.; et al. MOA-2011-BLG-262Lb: A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge. Astrophys. J. 2014, 785, 155. [Google Scholar] [CrossRef]
- Nucita, A.A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S. Discovery of a bright microlensing event with planetary features towards the Taurus region: A super-Earth planet. Mon. Not. R. Astron. Soc. 2018, 476, 2962–2967. [Google Scholar] [CrossRef]
- Ingrosso, G.; Novati, S.C.; de Paolis, F.; Jetzer, P.; Nucita, A.A.; Zakharov, A.F. Pixel lensing as a way to detect extrasolar planets in M31. Mon. Not. R. Astron. Soc. 2009, 399, 219–228. [Google Scholar] [CrossRef][Green Version]
- Gould, A.; Dong, S.; Gaudi, B.S.; Udalski, A.; Bond, I.A.; Greenhill, J.; Street, R.A.; Dominik, M.; Sumi, T.; Szymański, M.K.; et al. Frequency of Solar-like Systems and of Ice and Gas Giants Beyond the Snow Line from High-magnification Microlensing Events in 2005–2008. Astrophys. J. 2010, 720, 1073–1089. [Google Scholar] [CrossRef]
- Howard, A.W.; Marcy, G.W.; Bryson, S.T.; Jenkins, J.M.; Rowe, J.F.; Batalha, N.M.; Borucki, W.J.; Koch, D.G.; Dunham, E.W.; Gautier, T.N., III; et al. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler. Astrophys. J. Suppl. Ser. 2012, 201, 15. [Google Scholar] [CrossRef]
- Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.; Bouchy, F.; Dumusque, X.; et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv, 2011; arXiv:1109.2497. [Google Scholar]
- Cassan, A.; Kubas, D.; Beaulieu, J.P.; Dominik, M.; Horne, K.; Greenhill, J.; Wambsganss, J.; Menzies, J.; Williams, A.; Jørgensen, U.G.; et al. One or more bound planets per Milky Way star from microlensing observations. Nature 2012, 481, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.J.; Christiansen, J.L.; Mullally, F.; Seader, S.; Huber, D.; Rowe, J.F.; Coughlin, J.L.; Thompson, S.E.; Catanzarite, J.; Clarke, B.D.; et al. Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample. Astrophys. J. 2015, 809, 8. [Google Scholar] [CrossRef]
- Suzuki, D.; Bennett, D.P.; Sumi, T.; Bond, I.A.; Rogers, L.A.; Abe, F.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Freeman, M.; et al. The Exoplanet Mass-ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass. Astrophys. J. 2016, 833, 145. [Google Scholar] [CrossRef]
- Laughlin, G.; Bodenheimer, P.; Adams, F.C. The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs. Astrophys. J. Lett. 2004, 612, L73–L76. [Google Scholar] [CrossRef]
- Mordasini, C. Planetary population synthesis. arXiv, 2018; arXiv:1804.01532. [Google Scholar]
- Clanton, C.; Gaudi, B.S. Synthesizing Exoplanet Demographics: A Single Population of Long-period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys. Astrophys. J. 2016, 819, 125. [Google Scholar] [CrossRef]
- Shvartzvald, Y.; Maoz, D.; Udalski, A.; Sumi, T.; Friedmann, M.; Kaspi, S.; Poleski, R.; Szymański, M.K.; Skowron, J.; Kozłowski, S.; et al. The frequency of snowline-region planets from four years of OGLE-MOA-Wise second-generation microlensing. Mon. Not. R. Astron. Soc. 2016, 457, 4089–4113. [Google Scholar] [CrossRef]
- Nataf, D.M.; Gould, A.; Fouqué, P.; Gonzalez, O.A.; Johnson, J.A.; Skowron, J.; Udalski, A.; Szymański, M.K.; Kubiak, M.; Pietrzyński, G.; et al. Reddening and Extinction toward the Galactic Bulge from OGLE-III: The Inner Milky Way’s RV ∼ 2.5 Extinction Curve. Astrophys. J. 2013, 769, 88. [Google Scholar] [CrossRef]
- Boyajian, T.S.; von Braun, K.; van Belle, G.; Farrington, C.; Schaefer, G.; Jones, J.; White, R.; McAlister, H.A.; ten Brummelaar, T.A.; Ridgway, S.; et al. Stellar Diameters and Temperatures. III. Main Sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations. Astrophys. J. 2013, 771, 40, Erratum in 2014, 787, 92. [Google Scholar] [CrossRef]
- Kervella, P.; Thévenin, F.; Di Folco, E.; Ségransan, D. The angular sizes of dwarf stars and subgiants. Surface brightness relations calibrated by interferometry. Astron. Astrophys. 2004, 426, 297–307. [Google Scholar] [CrossRef]
- Gould, A. Extending the MACHO search to about 10 exp 6 solar masses. Astrophys. J. 1992, 392, 442–451. [Google Scholar] [CrossRef]
- Gould, A.; Udalski, A.; Monard, B.; Horne, K.; Dong, S.; Miyake, N.; Sahu, K.; Bennett, D.P.; Wyrzykowski, Ł.; Soszyński, I.; et al. The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observation of a Thick-Disk Brown Dwarf. Astrophys. J. Lett. 2009, 698, L147–L151. [Google Scholar] [CrossRef]
- Calchi Novati, S.; Gould, A.; Udalski, A.; Menzies, J.W.; Bond, I.A.; Shvartzvald, Y.; Street, R.A.; Hundertmark, M.; Beichman, C.A.; Yee, J.C.; et al. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events. Astrophys. J. 2015, 804, 20. [Google Scholar] [CrossRef]
- Shvartzvald, Y.; Li, Z.; Udalski, A.; Gould, A.; Sumi, T.; Street, R.A.; Calchi Novati, S.; Hundertmark, M.; Bozza, V.; Beichman, C.; et al. The First Simultaneous Microlensing Observations by Two Space Telescopes: Spitzer and Swift Reveal a Brown Dwarf in Event OGLE-2015-BLG-1319. Astrophys. J. 2016, 831, 183. [Google Scholar] [CrossRef]
- Henderson, C.B.; Poleski, R.; Penny, M.; Street, R.A.; Bennett, D.P.; Hogg, D.W.; Gaudi, B.S.; K2 Campaign 9 Microlensing Science Team.; Zhu, W.; Barclay, T.; et al. Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey. Publ. Astron. Soc. Pac. 2016, 128, 124401. [Google Scholar] [CrossRef]
- Udalski, A.; Yee, J.C.; Gould, A.; Carey, S.; Zhu, W.; Skowron, J.; Kozłowski, S.; Poleski, R.; Pietrukowicz, P.; Pietrzyński, G.; et al. Spitzer as a Microlens Parallax Satellite: Mass Measurement for the OGLE-2014-BLG-0124L Planet and its Host Star. Astrophys. J. 2015, 799, 237. [Google Scholar] [CrossRef]
- Beaulieu, J.P.; Batista, V.; Bennett, D.P.; Marquette, J.B.; Blackman, J.W.; Cole, A.A.; Coutures, C.; Danielski, C.; Dominis Prester, D.; Donatowicz, J.; et al. Combining Spitzer Parallax and Keck II Adaptive Optics Imaging to Measure the Mass of a Solar-like Star Orbited by a Cold Gaseous Planet Discovered by Microlensing. Astron. J. 2018, 155, 78. [Google Scholar] [CrossRef]
- Mogavero, F.; Beaulieu, J.P. Microlensing planet detection via geosynchronous and low Earth orbit satellites. Astron. Astrophys. 2016, 585, A62. [Google Scholar] [CrossRef]
- Bennett, D.P.; Anderson, J.; Bond, I.A.; Udalski, A.; Gould, A. Identification of the OGLE-2003-BLG-235/ MOA-2003-BLG-53 Planetary Host Star. Astrophys. J. Lett. 2006, 647, L171–L174. [Google Scholar] [CrossRef]
- Delfosse, X.; Forveille, T.; Ségransan, D.; Beuzit, J.L.; Udry, S.; Perrier, C.; Mayor, M. Accurate masses of very low mass stars. IV. Improved mass-luminosity relations. Astrophys. J. 2000, 364, 217–224. [Google Scholar]
- Bertelli, G.; Girardi, L.; Marigo, P.; Nasi, E. Scaled solar tracks and isochrones in a large region of the Z-Y plane. I. From the ZAMS to the TP-AGB end for 0.15–2.5 M⊙ stars. Astron. Astrophys. 2008, 484, 815–830. [Google Scholar] [CrossRef]
- Batista, V.; Beaulieu, J.P.; Bennett, D.P.; Gould, A.; Marquette, J.B.; Fukui, A.; Bhattacharya, A. Confirmation of the OGLE-2005-BLG-169 Planet Signature and Its Characteristics with Lens-Source Proper Motion Detection. Astrophys. J. 2015, 808, 170. [Google Scholar] [CrossRef]
- Bennett, D.P.; Bhattacharya, A.; Anderson, J.; Bond, I.A.; Anderson, N.; Barry, R.; Batista, V.; Beaulieu, J.P.; DePoy, D.L.; Dong, S.; et al. Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determodellingations for Event OGLE-2005-BLG-169. Astrophys. J. 2015, 808, 169. [Google Scholar] [CrossRef]
- Koshimoto, N.; Shvartzvald, Y.; Bennett, D.P.; Penny, M.T.; Hundertmark, M.; Bond, I.A.; Zang, W.C.; Henderson, C.B.; Suzuki, D.; Rattenbury, N.J.; et al. MOA-2016-BLG-227Lb: A Massive Planet Characterized by Combining Light-curve Analysis and Keck AO Imaging. Astron. J. 2017, 154, 3. [Google Scholar] [CrossRef]
- Batista, V.; Beaulieu, J.P.; Bennett, D.P.; Marquette, J.B. OGLE-2013-BLG-132. Astrophys. J. 2018. submitted. [Google Scholar]
- Beaulieu, J.P.E.A. AO. Astrophys. J. 2018. submitted. [Google Scholar]
- Batista, V.; Gould, A.; Dieters, S.; Dong, S.; Bond, I.; Beaulieu, J.P.; Maoz, D.; Monard, B.; Christie, G.W.; McCormick, J.; et al. MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf. Astron. Astrophys. 2011, 529, A102. [Google Scholar] [CrossRef]
- Gould, A. Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy. Astrophys. J. 2004, 606, 319–325. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Drake, A.J.; Freeman, K.C.; Geha, M.; et al. Direct detection of a microlens in the Milky Way. Nature 2001, 414, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Gould, A.; Udalski, A.; An, D.; Bennett, D.P.; Zhou, A.Y.; Dong, S.; Rattenbury, N.J.; Gaudi, B.S.; Yock, P.C.M.; Bond, I.A.; et al. Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common. Astrophys. J. Lett. 2006, 644, L37–L40. [Google Scholar] [CrossRef]
- Minniti, D.; Lucas, P.W.; Emerson, J.P.; Saito, R.K.; Hempel, M.; Pietrukowicz, P.; Ahumada, A.V.; Alonso, M.V.; Alonso-Garcia, J.; Arias, J.I.; et al. VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way. New Astron. 2010, 15, 433–443. [Google Scholar] [CrossRef][Green Version]
- Bertin, E. PSFEx: Point Spread Function Extractor; Astrophysics Source Code Library: Los Alamos, NM, USA, 2013. [Google Scholar]
- Bertin, E.; Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. Ser. 1996, 117, 393–404. [Google Scholar] [CrossRef]
- Bertin, E. SCAMP: Automatic Astrometric and Photometric Calibration; Astrophysics Source Code Library: Los Alamos, NM, USA, 2010. [Google Scholar]
- Bertin, E. SWarp: Resampling and Co-adding FITS Images Together; Astrophysics Source Code Library: Los Alamos, NM, USA, 2010. [Google Scholar]
- Taylor, M.B. TOPCAT, STIL: Starlink Table/VOTable Processing Software. In Astronomical Data Analysis Software and Systems XIV; Shopbell, P., Britton, M., Ebert, R., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 347, p. 29. [Google Scholar]
- Witzel, G.; Lu, J.R.; Ghez, A.M.; Martinez, G.D.; Fitzgerald, M.P.; Britton, M.; Sitarski, B.N.; Do, T.; Campbell, R.D.; Service, M.; et al. The AIROPA software package: milestones for testing general relativity in the strong gravity regime with AO. Adapt. Opt. Syst. V SPIE 2016, 9909, 99091O. [Google Scholar]
- Gonzalez, O.A.; Rejkuba, M.; Zoccali, M.; Valenti, E.; Minniti, D.; Schultheis, M.; Tobar, R.; Chen, B. Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS. II. The complete high resolution extinction map and implications for Galactic bulge studies. Astron. Astrophys. 2012, 543, A13. [Google Scholar] [CrossRef]
- Nishiyama, S.; Tamura, M.; Hatano, H.; Kato, D.; Tanabé, T.; Sugitani, K.; Nagata, T. Interstellar Extinction Law Toward the Galactic Center III: J, H, KS Bands in the 2MASS and the MKO Systems, and 3.6, 4.5, 5.8, 8.0 μm in the Spitzer/IRAC System. Astrophys. J. 2009, 696, 1407–1417. [Google Scholar] [CrossRef]
- Santerne, A.; Beaulieu, J.P.; Rojas Ayala, B.; Boisse, I.; Schlawin, E.; Almenara, J.M.; Batista, V.; Bennett, D.; Díaz, R.F.; Figueira, P.; et al. Spectroscopic characterisation of microlensing events. Towards a new interpretation of OGLE-2011-BLG-0417. Astron. Astrophys. 2016, 595, L11. [Google Scholar] [CrossRef]
- Shvartzvald, Y.; Calchi Novati, S.; Gaudi, B.S.; Bryden, G.; Nataf, D.M.; Penny, M.T.; Beichman, C.; Henderson, C.B.; Jacklin, S.; et al. UKIRT-2017-BLG-001Lb: A giant planet detected through the dust. arXiv, 2018; arXiv:1802.06795. [Google Scholar]
- Yee, J.C.; Han, C.; Gould, A.; Skowron, J.; Bond, I.A.; Udalski, A.; Hundertmark, M.; Monard, L.A.G.; Porritt, I.; Nelson, P.; et al. MOA-2013-BLG-220Lb: Massive Planetary Companion to Galactic-disk Host. Astrophys. J. 2014, 790, 14. [Google Scholar] [CrossRef]
- Mróz, P.; Udalski, A.; Bond, I.A.; Skowron, J.; Sumi, T.; Han, C.; Szymański, M.K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; et al. OGLE-2013-BLG-0132Lb and OGLE-2013-BLG-1721Lb: Two Saturn-mass Planets Discovered around M-dwarfs. Astron. J. 2017, 154, 205. [Google Scholar] [CrossRef]
- Han, C.; Udalski, A.; Choi, J.Y.; Yee, J.C.; Gould, A.; Christie, G.; Tan, T.G.; Szymański, M.K.; Kubiak, M.; Soszyński, I.; et al. The Second Multiple-planet System Discovered by Microlensing: OGLE-2012-BLG-0026Lbc, A Pair of Jovian Planets beyond the Snow Line. Astrophys. J. Lett. 2013, 762, L28. [Google Scholar] [CrossRef]
- Yee, J.C.; Shvartzvald, Y.; Gal-Yam, A.; Bond, I.A.; Udalski, A.; Kozłowski, S.; Han, C.; Gould, A.; Skowron, J.; Suzuki, D.; et al. MOA-2011-BLG-293Lb: A Test of Pure Survey Microlensing Planet Detections. Astrophys. J. 2012, 755, 102. [Google Scholar] [CrossRef]
- Dong, S.; Bond, I.A.; Gould, A.; Kozłowski, S.; Miyake, N.; Gaudi, B.S.; Bennett, D.P.; Abe, F.; Gilmore, A.C.; Fukui, A.; et al. Microlensing Event MOA-2007-BLG-400: Exhuming the Buried Signature of a Cool, Jovian-Mass Planet. Astrophys. J. 2009, 698, 1826–1837. [Google Scholar] [CrossRef]
- Udalski, A.; Jaroszyński, M.; Paczyński, B.; Kubiak, M.; Szymański, M.K.; Soszyński, I.; Pietrzyński, G.; Ulaczyk, K.; Szewczyk, O.; Wyrzykowski, Ł.; et al. A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071. Astrophys. J. Lett. 2005, 628, L109–L112. [Google Scholar] [CrossRef]
- Dong, S.; Gould, A.; Udalski, A.; Anderson, J.; Christie, G.W.; Gaudi, B.S.; OGLE Collaboration; Jaroszyński, M.; Kubiak, M.; Szymański, M.K.; et al. OGLE-2005-BLG-071Lb, the Most Massive M Dwarf Planetary Companion? Astrophys. J. 2009, 695, 970–987. [Google Scholar] [CrossRef]
- Bond, I.A.; Udalski, A.; Jaroszyński, M.; Rattenbury, N.J.; Paczyński, B.; Soszyński, I.; Wyrzykowski, L.; Szymański, M.K.; Kubiak, M.; Szewczyk, O.; et al. OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event. Astrophys. J. Lett. 2004, 606, L155–L158. [Google Scholar] [CrossRef]
- Koshimoto, N.; Udalski, A.; Beaulieu, J.P.; Sumi, T.; Bennett, D.P.; Bond, I.A.; Rattenbury, N.; Fukui, A.; Batista, V.; Marquette, J.B.; et al. OGLE-2012-BLG-0950Lb: The First Planet Mass Measurement from Only Microlens Parallax and Lens Flux. Astron. J. 2017, 153, 1. [Google Scholar] [CrossRef]
- Fukui, A.; Gould, A.; Sumi, T.; Bennett, D.P.; Bond, I.A.; Han, C.; Suzuki, D.; Beaulieu, J.P.; Batista, V.; Udalski, A.; et al. OGLE-2012-BLG-0563Lb: A Saturn-mass Planet around an M Dwarf with the Mass Constrained by Subaru AO Imaging. Astrophys. J. 2015, 809, 74. [Google Scholar] [CrossRef]
- Poleski, R.; Udalski, A.; Bond, I.A.; Beaulieu, J.P.; Clanton, C.; Gaudi, S.; Szymański, M.K.; Soszyński, I.; Pietrukowicz, P.; Kozłowski, S.; et al. A companion on the planet/brown dwarf mass boundary on a wide orbit discovered by gravitational microlensing. arXiv, 2017; arXiv:1704.01121. [Google Scholar]
- Cole, A.; Beaulieu, J.P.; Marquette, J.B. OGLE-2015-BLG-1395. Astrophys. J. 2018. submitted. [Google Scholar]
- Yee, J.C.; Gould, A.; Beichman, C.; Calchi Novati, S.; Carey, S.; Gaudi, B.S.; Henderson, C.B.; Nataf, D.; Penny, M.; Shvartzvald, Y.; Zhu, W. Criteria for Sample Selection to Maximize Planet Sensitivity and Yield from Space-Based Microlens Parallax Surveys. Astrophys. J. 2015, 810, 155. [Google Scholar] [CrossRef]
- Yee, J.C.; Fazio, G.G.; Benjamin, R.; Kirkpatrick, J.D.; Malkan, M.A.; Trilling, D.; Carey, S.; Ciardi, D.R.; Apai, D.; Ashby, M.L.N.; et al. The Science Case for an Extended Spitzer Mission. arXiv, 2017; arXiv:1710.04194. [Google Scholar]
1. | The Extrasolar Planets Encyclopaedia http://exoplanet.eu/ and the NASA exoplanet archive, https://exoplanetarchive.ipac.caltech.edu/. |
Name | Distance (kpc) Initial | Distance (kpc) with HR | Mass () Initial | Mass () with HR | ref |
---|---|---|---|---|---|
OGLE-2014-BLG-124 | (124) | ||||
MOA-2013-BLG-220 | (220) | ||||
OGLE-2013-BLG-132 | (132) | ||||
OGLE-2012-BLG-026 | (026) | ||||
MOA-2011-BLG-293 | (293) | ||||
MOA-2009-BLG-319 | (319) | ||||
MOA-2007-BLG-400 | (400) | ||||
MOA-2007-BLG-192 | (192) | ||||
OGLE-2005-BLG-169 | (169) | ||||
OGLE-2005-BLG-071 | (071) | ||||
OGLE-2003-BLG-235 | (235) | ||||
MOA-2016-BLG-227 | (227) | ||||
OGLE-2013-BLG-605 | (605) | ||||
OGLE-2012-BLG-950 | (950) | ||||
OGLE-2012-BLG-563 | (563) | ||||
OGLE-2012-BLG-006 | (006) | ||||
MOA-2008-BLG-310 | (310) | ||||
OGLE-2007-BLG-368 | (368) | ||||
OGLE-2007-BLG-387 | (387) | ||||
OGLE-2007-BLG-349 | (349) | ||||
OGLE-2006-BLG-109 | (109) |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaulieu, J.-P. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations. Universe 2018, 4, 61. https://doi.org/10.3390/universe4040061
Beaulieu J-P. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations. Universe. 2018; 4(4):61. https://doi.org/10.3390/universe4040061
Chicago/Turabian StyleBeaulieu, Jean-Philippe. 2018. "Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations" Universe 4, no. 4: 61. https://doi.org/10.3390/universe4040061