Perspectives on Constraining a Cosmological Constant-Type Parameter with Pulsar Timing in the Galactic Center
Abstract
:1. Introduction
2. Calculating the Perturbation of the Orbital Component of the Time Shift Due to the Cosmological Constant
3. The Opportunity Offered by Hypotetical Pulsars in the Galactic Center
4. Summary and Conclusions
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Notations and definitions
- Newtonian constant of gravitation
- speed of light in vacuum
- reduced Planck constant
- Planck length
- cosmological constant
- Hubble parameter
- critical density of the universe
- density due to the cosmological constant
- normalized energy density of the cosmological constant
- : mass of the pulsar p
- : mass of the invisible companion c
- : total mass of the binary
- gravitational parameter of the binary
- semimajor axis of the binary’s relative orbit
- Keplerian mean motion
- Keplerian orbital period
- semimajor axis of the barycentric orbit of the pulsar p
- eccentricity
- inclination of the orbital plane
- argument of pericenter
- time of periastron passage
- reference epoch
- mean anomaly
- true anomaly
- eccentric anomaly
- argument of latitude
- relative position vector of the binary’s orbit
- component of the position vector along the line of sight
- magnitude of the binary’s relative position vector
- radial unit vector
- unit vector of the orbital angular momentum
- transverse unit vector
- radial component of the relative position vector of the binary’s orbit
- normal component of the relative position vector of the binary’s orbit
- transverse component of the relative position vector of the binary’s orbit
- perturbing potential due to the cosmological constant
- perturbing acceleration due to the cosmological constant
- periodic variation of the time of arrivals of the pulses from the pulsar p due to its barycentric orbital motion
Appendix A.2. Tables and Figures
Estimated Parameter | Value |
---|---|
a | |
e | |
I | |
calendar year |
References
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astrophys. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological Constant. Living Rev. Relativ. 2001, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Peebles, P.J.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant-the weight of the vacuum. Phys. Rep. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Carroll, S.M. Spacetime and Geometry. An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Davis, T.; Griffen, B. Cosmological constant. Scholarpedia 2010, 5, 4473. [Google Scholar] [CrossRef]
- O’Raifeartaigh, C.; O’Keeffe, M.; Nahm, W.; Mitton, S. One Hundred Years of the Cosmological Constant: from ‘Superfluous Stunt’ to Dark Energy. Eur. Phys. J. H 2018, 43, 1–45. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Nesseris, S.; Perivolaropoulos, L. Testing ΛCDM with the growth function δ(a): Current constraints. Phys. Rev. D 2008, 77, 023504. [Google Scholar] [CrossRef]
- Spergel, D.N. The dark side of cosmology: Dark matter and dark energy. Science 2015, 347, 1100–1102. [Google Scholar] [CrossRef] [PubMed]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Seeliger, H. Über das Newton’sche Gravitationsgesetz. Astron. Nachr. 1895, 137, 129–136. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Mielke, E.W. Weak equivalence principle from a spontaneously broken gauge theory of gravity. Phys. Lett. B 2011, 702, 187–190. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–146. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity as an alternative for ΛCDM cosmology. J. Phys. A Math. Gen. 2007, 40, 6725–6732. [Google Scholar] [CrossRef]
- Dunsby, P.K.S.; Elizalde, E.; Goswami, R.; Odintsov, S.; Saez-Gomez, D. ΛCDM universe in f(R) gravity. Phys. Rev. D 2010, 82, 023519. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D. Non-Singular Modified Gravity Unifying Inflation with Late-Time Acceleration and Universality of Viscous Ratio Bound in F(R) Theory. Prog. Theor. Phys. Supp. 2011, 190, 155–178. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. The dark matter problem from f(R) gravity viewpoint. Ann. Phys. Berlin 2012, 524, 545–578. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.; Lobo, F.; Olmo, G. Hybrid Metric-Palatini Gravity. Universe 2015, 1, 199–238. [Google Scholar] [CrossRef]
- De Martino, I.; De Laurentis, M.; Capozziello, S. Constraining f(R) gravity by the Large Scale Structure. Universe 2015, 1, 123–157. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M.; Luongo, O. Connecting early and late universe by f(R) gravity. Int. J. Mod. Phys. D 2015, 24, 1541002. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In Das Relativitätsprinzip. Fortschritte der Mathematischen Wissenschaften in Monographien; Vieweg + Teubner Verlag: Wiesbaden, Germany, 1917; pp. 142–152. [Google Scholar]
- Islam, J. The cosmological constant and classical tests of general relativity. Phys. Lett. A 1983, 97, 239–241. [Google Scholar] [CrossRef]
- Cardona, J.; Tejero, J. Can interplanetary measures bound the cosmological constant? Astrophys. J. 1998, 493, 52–53. [Google Scholar] [CrossRef]
- Rindler, W. Relativity: Special, General, and Cosmological; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Kerr, A.; Hauck, J.; Mashhoon, B. Standard clocks, orbital precession and the cosmological constant. Class. Quantum Gravity 2003, 20, 2727–2736. [Google Scholar] [CrossRef]
- Kraniotis, G.; Whitehouse, S. Compact calculation of the perihelion precession of mercury in general relativity, the cosmological constant and Jacobi’s inversion problem. Class. Quantum Gravity 2003, 20, 4817–4835. [Google Scholar] [CrossRef]
- Iorio, L. Can solar system observations tell us something about the cosmological constant? Int. J. Mod. Phys. D 2006, 15, 473–475. [Google Scholar] [CrossRef]
- Jetzer, P.; Sereno, M. Two-body problem with the cosmological constant and observational constraints. Phys. Rev. D 2006, 73, 044015. [Google Scholar] [CrossRef]
- Kagramanova, V.; Kunz, J.; Lämmerzahl, C. Solar system effects in Schwarzschild-de Sitter space-time. Phys. Lett. B 2006, 634, 465–470. [Google Scholar] [CrossRef]
- Sereno, M.; Jetzer, P. Solar and stellar system tests of the cosmological constant. Phys. Rev. D 2006, 73, 063004. [Google Scholar] [CrossRef]
- Adkins, G.; McDonnell, J.; Fell, R. Cosmological perturbations on local systems. Phys. Rev. D 2007, 75, 064011. [Google Scholar] [CrossRef]
- Adkins, G.; McDonnell, J. Orbital precession due to central-force perturbations. Phys. Rev. D 2007, 75, 082001. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Iorio, L. Solar System planetary orbital motions and f(R) theories of gravity. J. Cosmol. Astropart. Phys. 2007, 1, 010. [Google Scholar] [CrossRef]
- Sereno, M.; Jetzer, P. Evolution of gravitational orbits in the expanding universe. Phys. Rev. D 2007, 75, 064031. [Google Scholar] [CrossRef]
- Iorio, L. Solar System Motions and the Cosmological Constant: A New Approach. Adv. Astron. 2008, 2008, 268647. [Google Scholar] [CrossRef]
- Chashchina, O.I.; Silagadze, Z.K. Remark on orbital precession due to central-force perturbations. Phys. Rev. D 2008, 77, 107502. [Google Scholar] [CrossRef]
- Iorio, L.; Saridakis, E.N. Solar system constraints on f(T) gravity. Mon. Not. R. Astron. Soc. 2012, 427, 1555–1561. [Google Scholar] [CrossRef]
- Arakida, H. Note on the Perihelion/Periastron Advance Due to Cosmological Constant. Int. J. Theor. Phys. 2013, 52, 1408–1414. [Google Scholar] [CrossRef]
- Xie, Y.; Deng, X.M. f (T) gravity: Effects on astronomical observations and Solar system experiments and upper bounds. Mon. Not. R. Astron. Soc. 2013, 433, 3584–3589. [Google Scholar] [CrossRef]
- Iorio, L.; Radicella, N.; Ruggiero, M.L. Constraining f(T) gravity in the Solar System. J. Cosmol. Astropart. Phys. 2015, 8, 021. [Google Scholar] [CrossRef]
- Ovcherenko, S.S.; Silagadze, Z.K. Comment on perihelion advance due to cosmological constant. Ukr. J. Phys. 2016, 61, 342–344. [Google Scholar] [CrossRef]
- Kottler, F. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Ann. Phys. Berlin 1918, 361, 401–462. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Hledík, S. Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes. Phys. Rev. D 1999, 60, 044006. [Google Scholar] [CrossRef]
- Fienga, A.; Laskar, J.; Kuchynka, P.; Manche, H.; Desvignes, G.; Gastineau, M.; Cognard, I.; Theureau, G. The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 2011, 111, 363–385. [Google Scholar] [CrossRef] [Green Version]
- Hees, A.; Folkner, W.M.; Jacobson, R.A.; Park, R.S. Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D 2014, 89, 102002. [Google Scholar] [CrossRef]
- Iorio, L.; Ruggiero, M.L.; Radicella, N.; Saridakis, E.N. Constraining the Schwarzschild-de Sitter solution in models of modified gravity. Phys. Dark Univ. 2016, 13, 111–120. [Google Scholar] [CrossRef]
- Hees, A.; Lamine, B.; Reynaud, S.; Jaekel, M.T.; Le Poncin-Lafitte, C.; Lainey, V.; Füzfa, A.; Courty, J.M.; Dehant, V.; Wolf, P. Radioscience simulations in general relativity and in alternative theories of gravity. Class. Quantum Gravity 2012, 29, 235027. [Google Scholar] [CrossRef] [Green Version]
- Pfahl, E.; Loeb, A. Probing the Spacetime around Sagittarius A* with Radio Pulsars. Astrophys. J. 2004, 615, 253–258. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Y.; Yu, Q. On the Existence of Pulsars in the Vicinity of the Massive Black Hole in the Galactic Center. Astrophys. J. 2014, 784, 106. [Google Scholar] [CrossRef]
- Chennamangalam, J.; Lorimer, D.R. The Galactic Centre pulsar population. Mon. Not. R. Astron. Soc. Lett. 2014, 440, L86–L90. [Google Scholar] [CrossRef]
- Rajwade, K.M.; Lorimer, D.R.; Anderson, L.D. Detecting pulsars in the Galactic Centre. Mon. Not. R. Astron. Soc. 2017, 471, 730–739. [Google Scholar] [CrossRef]
- Psaltis, D.; Wex, N.; Kramer, M. A Quantitative Test of the No-hair Theorem with Sgr A* Using Stars, Pulsars, and the Event Horizon Telescope. Astrophys. J. 2016, 818, 121. [Google Scholar] [CrossRef]
- Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, J.R.J.; Deane, R.; de Laurentis, M.; Desvignes, G.; et al. BlackHoleCam: Fundamental physics of the galactic center. Int. J. Mod. Phys. D 2017, 26, 1730001. [Google Scholar] [CrossRef]
- Espriu, D. Pulsar timing arrays and the cosmological constant. AIP Conf. Proc. 2014, 1606, 86–98. [Google Scholar]
- Iorio, L. Post-Keplerian perturbations of the orbital time shift in binary pulsars: An analytical formulation with applications to the galactic center. Eur. Phys. J. C 2017, 77, 439. [Google Scholar] [CrossRef]
- Schücker, T.; Zaimen, N. Cosmological constant and time delay. Astron. Astrophys. 2008, 484, 103–106. [Google Scholar] [CrossRef]
- Merritt, D.; Alexander, T.; Mikkola, S.; Will, C.M. Stellar dynamics of extreme-mass-ratio inspirals. Phys. Rev. D 2011, 84, 044024. [Google Scholar] [CrossRef]
- Sadeghian, L.; Will, C.M. Testing the black hole no-hair theorem at the galactic center: Perturbing effects of stars in the surrounding cluster. Class. Quantum Gravity 2011, 28, 225029. [Google Scholar] [CrossRef]
- Angélil, R.; Saha, P. Clocks around Sgr A*. Mon. Not. R. Astron. Soc. 2014, 444, 3780–3791. [Google Scholar] [CrossRef]
- Zhang, F.; Iorio, L. On the Newtonian and Spin-induced Perturbations Felt by the Stars Orbiting around the Massive Black Hole in the Galactic Center. Astrophys. J. 2017, 834, 198. [Google Scholar] [CrossRef]
- Zhang, F.; Saha, P. Probing the spinning of the massive black hole in the Galactic Center via pulsar timing: A Full Relativistic Treatment. Astrophys. J. 2017, 849, 33. [Google Scholar] [CrossRef]
- De Laurentis, M.; Younsi, Z.; Porth, O.; Mizuno, Y.; Rezzolla, L. Test-particle dynamics in general spherically symmetric black hole spacetimes. arXiv, 2017; arXiv:1712.00265. [Google Scholar]
- Casotto, S. Position and velocity perturbations in the orbital frame in terms of classical element perturbations. Celest. Mech. Dyn. Astron. 1993, 55, 209–221. [Google Scholar] [CrossRef]
- Eckart, A.; Hüttemann, A.; Kiefer, C.; Britzen, S.; Zajaček, M.; Lämmerzahl, C.; Stöckler, M.; Valencia-S, M.; Karas, V.; García-Marín, M. The Milky Way’s Supermassive Black Hole: How Good a Case Is It? Found. Phys. 2017, 47, 553–624. [Google Scholar] [CrossRef]
- Gillessen, S.; Plewa, P.M.; Eisenhauer, F.; Sari, R.; Waisberg, I.; Habibi, M.; Pfuhl, O.; George, E.; Dexter, J.; von Fellenberg, S.; et al. An Update on Monitoring Stellar Orbits in the Galactic Center. Astrophys. J. 2017, 837, 30. [Google Scholar] [CrossRef]
- Hees, A.; Do, T.; Ghez, A.M.; Martinez, G.D.; Naoz, S.; Becklin, E.E.; Boehle, A.; Chappell, S.; Chu, D.; Dehghanfar, A.; et al. Testing General Relativity with Stellar Orbits around the Supermassive Black Hole in Our Galactic Center. Phys. Rev. Lett. 2017, 118, 211101. [Google Scholar] [CrossRef] [PubMed]
- Lucy, L.B. Mass estimates for visual binaries with incomplete orbits. Astron. Astrophys. 2014, 563, A126. [Google Scholar] [CrossRef]
- Brumberg, V.A. Essential Relativistic Celestial Mechanics; Taylor & Francis Group: Boca Raton, FL, USA, 1991. [Google Scholar]
- Milani, A.; Nobili, A.; Farinella, P. Non-Gravitational Perturbations and Satellite Geodesy; Taylor & Francis: Boca Raton, FL, USA, 1987. [Google Scholar]
- Soffel, M.H. Relativity in Astrometry, Celestial Mechanics and Geodesy; Springer: Berlin, Germany, 1989. [Google Scholar]
- Bertotti, B.; Farinella, P.; Vokrouhlický, D. Physics of the Solar System—Dynamics and Evolution, Space Physics, and Spacetime Structure; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, L. Perspectives on Constraining a Cosmological Constant-Type Parameter with Pulsar Timing in the Galactic Center. Universe 2018, 4, 59. https://doi.org/10.3390/universe4040059
Iorio L. Perspectives on Constraining a Cosmological Constant-Type Parameter with Pulsar Timing in the Galactic Center. Universe. 2018; 4(4):59. https://doi.org/10.3390/universe4040059
Chicago/Turabian StyleIorio, Lorenzo. 2018. "Perspectives on Constraining a Cosmological Constant-Type Parameter with Pulsar Timing in the Galactic Center" Universe 4, no. 4: 59. https://doi.org/10.3390/universe4040059
APA StyleIorio, L. (2018). Perspectives on Constraining a Cosmological Constant-Type Parameter with Pulsar Timing in the Galactic Center. Universe, 4(4), 59. https://doi.org/10.3390/universe4040059