# A Phenomenological Equation of State of Strongly Interacting Matter with First-Order Phase Transitions and Critical Points

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Model

#### 2.1. Relativistic Energy Density Functional with Modified Excluded-Volume Mechanism

#### 2.2. Available-Volume Fractions and Model Parameters

^{−3}), binding energy at saturation ($B=16.02$ MeV), incompressibility ($K=242.7$ MeV), symmetry energy ($J=32.73$ MeV), and slope ($L=57.94$ MeV), that are consistent with modern constraints from experiment and theory.

^{3}, ${T}_{0}=270$ MeV, and ${n}_{\mathrm{cut}}={n}_{\mathrm{sat}}$ of the DD2 parametrization.

## 3. Results

^{−3}, well above the nuclear saturation density ${n}_{\mathrm{sat}}$. At higher temperatures, it moves to lower densities with an almost constant extension in baryon density except for temperatures close to ${T}_{\mathrm{crit}}$. Here, the critical density is found as 0.201 fm

^{−3}, still above ${n}_{\mathrm{sat}}$. The dashed line in panel (a) marks the boundary between regions without (lower left) and with (upper right) effects of the modified EV mechanism in the present parametrization. It corresponds to the condition $x=0$. There is another region in the phase diagram without modified EV effects at temperatures above ${T}_{0}$, outside the figure.

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

CCSN | core-collapse supernova |

EoS | equation of state |

EV | excluded-volume |

HIC | heavy-ion collision |

NS | neutron star |

PT | phase transition |

QCD | quantum chromodynamics |

RMF | relativistic mean-field |

## References

- Alford, M.G.; Han, S.; Prakash, M. Generic conditions for stable hybrid stars. Phys. Rev. D
**2013**, 88, 083013. [Google Scholar] [CrossRef] - Benic, S.; Blaschke, D.; Alvarez-Castillo, D.E.; Fischer, T.; Typel, S. A new quark-hadron hybrid equation of state for astrophysics—I. High-mass twin compact stars. Astron. Astrophys.
**2015**, 577, A40. [Google Scholar] - Alvarez-Castillo, D.E.; Blaschke, D.B. High-mass twin stars with a multipolytrope equation of state. Phys. Rev. C
**2017**, 96, 045809. [Google Scholar] [CrossRef] - Sagert, I.; Fischer, T.; Hempel, M.; Pagliara, G.; Schaffner-Bielich, J.; Mezzacappa, A.; Thielemann, F.K.; Liebendörfer, M. Signals of the QCD phase transition in core-collapse supernovae. Phys. Rev. Lett.
**2009**, 102, 081101. [Google Scholar] [CrossRef] [PubMed] - Fischer, T.; Whitehouse, S.C.; Mezzacappa, A.; Thielemann, F.K.; Liebendörfer, M. The neutrino signal from protoneutron star accretion and black hole formation. Astron. Astrophys.
**2009**, 499, 1–15. [Google Scholar] [CrossRef] - Fischer, T.; Sagert, I.; Pagliara, G.; Hempel, M.; Schaffner-Bielich, J.; Rauscher, T.; Thielemann, F.K.; Käppeli, R.; Martinez-Pinedo, G.; Liebendörfer, M. Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase. Astrophys. J. Suppl.
**2011**, 194, 39. [Google Scholar] [CrossRef] - Fischer, T.; Bastian, N.U.; Blaschke, D.; Cerniak, M.; Hempel, M.; Klähn, T.; Martínez-Pinedo, G.; Newton, W.G.; Röpke, G.; Typel, S. The state of matter in simulations of core-collapse supernovae—Reflections and recent developments. Publ. Astron. Soc. Aust.
**2017**, 34, 67. [Google Scholar] - Blaschke, D.B.; Sandin, F.; Skokov, V.V.; Typel, S. Accessibility of Color Superconducting Quark Matter Phases in Heavy-ion Collisions. Acta Phys. Pol. Suppl.
**2010**, 3, 741–746. [Google Scholar] - Bazavov, A.; Bhattacharya, T.; DeTar, C.; Ding, H.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; Laermann, E.; et al. Equation of state in (2 + 1)-flavor QCD. Phys. Rev. D
**2014**, 90, 094503. [Google Scholar] [CrossRef] - Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Szabo, K.K. Full result for the QCD equation of state with 2 + 1 flavors. Phys. Lett. B
**2014**, 730, 99–104. [Google Scholar] [CrossRef] - Bratovic, N.M.; Hatsuda, T.; Weise, W. Role of Vector Interaction and Axial Anomaly in the PNJL Modeling of the QCD Phase Diagram. Phys. Lett. B
**2013**, 719, 131–135. [Google Scholar] [CrossRef] - Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars. arXiv, 2017; arXiv:astro-ph.HE/1707.04966. [Google Scholar]
- Abuki, H.; Baym, G.; Hatsuda, T.; Yamamoto, N. The NJL model of dense three-flavor matter with axial anomaly: The low temperature critical point and BEC-BCS diquark crossover. Phys. Rev. D
**2010**, 81, 125010. [Google Scholar] [CrossRef] - Hatsuda, T.; Tachibana, M.; Yamamoto, N.; Baym, G. New critical point induced by the axial anomaly in dense QCD. Phys. Rev. Lett.
**2006**, 97, 122001. [Google Scholar] [CrossRef] [PubMed] - Klähn, T.; Fischer, T. Vector interaction enhanced bag model for astrophysical applications. Astrophys. J.
**2015**, 810, 134. [Google Scholar] [CrossRef] - Dexheimer, V.A.; Schramm, S. A Novel Approach to Model Hybrid Stars. Phys. Rev. C
**2010**, 81, 045201. [Google Scholar] [CrossRef] - Mukherjee, A.; Steinheimer, J.; Schramm, S. Higher-order baryon number susceptibilities: Interplay between the chiral and the nuclear liquid-gas transitions. Phys. Rev. C
**2017**, 96, 025205. [Google Scholar] [CrossRef] - Vovchenko, V.; Pasztor, A.; Fodor, Z.; Katz, S.D.; Stoecker, H. Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential. Phys. Lett. B
**2017**, 775, 71–78. [Google Scholar] [CrossRef] - Typel, S. Variations on the excluded-volume mechanism. Eur. Phys. J. A
**2016**, 52, 16. [Google Scholar] [CrossRef] - Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys.
**2017**, 89, 015007. [Google Scholar] - Rischke, D.H.; Gorenstein, M.I.; Stoecker, H.; Greiner, W. Excluded volume effect for the nuclear matter equation of state. Z. Phys. C
**1991**, 51, 485–490. [Google Scholar] [CrossRef] - Satarov, L.M.; Dmitriev, M.N.; Mishustin, I.N. Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter. Phys. Atom. Nucl.
**2009**, 72, 1390–1415. [Google Scholar] [CrossRef] - Typel, S.; Röpke, G.; Klähn, T.; Blaschke, D.; Wolter, H.H. Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C
**2010**, 81, 015803. [Google Scholar] [CrossRef] - Vovchenko, V.; Gorenstein, M.I.; Stoecker, H. Van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD. Phys. Rev. Lett.
**2017**, 118, 182301. [Google Scholar] [CrossRef] [PubMed] - Hempel, M.; Schaffner-Bielich, J. Statistical Model for a Complete Supernova Equation of State. Nucl. Phys. A
**2010**, 837, 210–254. [Google Scholar] [CrossRef] - Chatterjee, D.; Vidaña, I. Do hyperons exist in the interior of neutron stars? Eur. Phys. J. A
**2016**, 52, 29. [Google Scholar] [CrossRef] - Schaffner-Bielich, J. Hypernuclear Physics for Neutron Stars. Nucl. Phys. A
**2008**, 804, 309–321. [Google Scholar] [CrossRef] - Typel, S.; Wolter, H.H.; Röpke, G.; Blaschke, D. Effects of the liquid-gas phase transition and cluster formation on the symmetry energy. Eur. Phys. J. A
**2014**, 50, 17. [Google Scholar] [CrossRef] - Steiner, A.W.; Lattimer, J.M.; Brown, E.F. The Equation of State from Observed Masses and Radii of Neutron Stars. Astrophys. J.
**2010**, 722, 33–54. [Google Scholar] [CrossRef] - Alvarez-Castillo, D.; Ayriyan, A.; Benic, S.; Blaschke, D.; Grigorian, H.; Typel, S. New class of hybrid EoS and Bayesian M-R data analysis. Eur. Phys. J. A
**2016**, 52, 69. [Google Scholar] [CrossRef] - Pratt, S.; Sangaline, E.; Sorensen, P.; Wang, H. Constraining the Equation of State of Superhadronic Matter from Heavy-Ion Collisions. Phys. Rev. Lett.
**2015**, 114, 202301. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Isotherms in isospin-symmetric strongly interacting matter in the pressure–baryon density diagram at temperatures from 0 to 160 MeV in steps of 20 MeV (dashed colored lines) and at the critical temperature ${T}_{\mathrm{crit}}$ of the pseudo hadron–quark phase transition (black dot-dashed line). The binodals and critical points are denoted by full black lines and a full (open) circle of the pseudo hadron–quark (liquid-gas) phase transition, respectively.

**Figure 2.**Binodals (full lines) and critical points (full and open circles) of isospin-symmetric strongly interacting matter in (

**a**) the temperature–baryon density diagram and (

**b**) the temperature–baryon chemical potential diagram. The dashed line in panel (

**a**) separates the region without effects of the modified excluded-volume mechanism (lower left) from the region with effects (upper right). Results for the liquid–gas phase transition are shown at subsaturation densities.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Typel, S.; Blaschke, D.
A Phenomenological Equation of State of Strongly Interacting Matter with First-Order Phase Transitions and Critical Points. *Universe* **2018**, *4*, 32.
https://doi.org/10.3390/universe4020032

**AMA Style**

Typel S, Blaschke D.
A Phenomenological Equation of State of Strongly Interacting Matter with First-Order Phase Transitions and Critical Points. *Universe*. 2018; 4(2):32.
https://doi.org/10.3390/universe4020032

**Chicago/Turabian Style**

Typel, Stefan, and David Blaschke.
2018. "A Phenomenological Equation of State of Strongly Interacting Matter with First-Order Phase Transitions and Critical Points" *Universe* 4, no. 2: 32.
https://doi.org/10.3390/universe4020032