#
Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX^{ †}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results

## Acknowledgments

## Conflicts of Interest

## References

- Csanád, M.; Csörgő, T.; Lörstad, B.; Ster, A. Indication of quark deconfinement and evidence for a Hubble flow in 130-GeV and 200-GeV Au + Au collisions. J. Phys. G
**2004**, 30, S1079–S1082. [Google Scholar] [CrossRef] - Aoki, Y.; Endrődi, G.; Fodor, Z.; Katz, S.D.; Szabó, K.K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature
**2006**, 443, 675–678. [Google Scholar] [CrossRef] [PubMed] - Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; Aparin, A.; et al. Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program. Phys. Rev. C
**2017**, 96, 044904. [Google Scholar] [CrossRef] - Csörgő, T. Particle interferometry from 40-MeV to 40-TeV. Heavy Ion Phys.
**2002**, 15, 1–80. [Google Scholar] [CrossRef] - Lisa, M.A.; Pratt, S.; Soltz, R.; Wiedemann, U. Femtoscopy in relativistic heavy ion collisions. Ann. Rev. Nucl. Part. Sci.
**2005**, 55, 357–402. [Google Scholar] [CrossRef] - Csanad, M. Measurement and analysis of two- and three-particle correlations. Nucl. Phys. A
**2006**, 774, 611–614. [Google Scholar] [CrossRef] - Adare, A.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Al-Ta’ani, H.; Angerami, A.; Aoki, K.; et al. Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{{s}_{NN}}=$ 200 GeV Au + Au collisions. arXiv, 2017; arXiv:nucl-ex/1709.05649. [Google Scholar]
- Csanád, M.; Csörgő, T.; Nagy, M. Anomalous diffusion of pions at RHIC. Braz. J. Phys.
**2007**, 37, 1002–1013. [Google Scholar] [CrossRef] - Csörgő, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. C
**2004**, 36, 67–78. [Google Scholar] [CrossRef] - Bolz, J.; Ornik, U.; Plumer, M.; Schlei, B.R.; Weiner, R.M. Resonance decays and partial coherence in Bose-Einstein correlations. Phys. Rev. D
**1993**, 47, 3860–3870. [Google Scholar] [CrossRef] - Rieger, H. Critical behavior of the three-dimensional random-field Ising model: Two-exponent scaling and discontinuous transition. Phys. Rev. B
**1995**, 52, 6659–6667. [Google Scholar] [CrossRef] - Csörgő, T. Correlation Probes of a QCD Critical Point. In Proceedings of the PoS (HIGH-PTLHC 08), Tokaj, Hungary, 16–19 March 2008. [Google Scholar]
- Halasz, A.M.; Jackson, A.D.; Shrock, R.E.; Stephanov, M.A.; Verbaarschot, J.J.M. On the phase diagram of QCD. Phys. Rev. D
**1998**, 58, 096007. [Google Scholar] [CrossRef] - Stephanov, M.A.; Rajagopal, K.; Shuryak, E.V. Signatures of the tricritical point in QCD. Phys. Rev. Lett.
**1998**, 81, 4816–4819. [Google Scholar] [CrossRef] - El-Showk, S.; Paulos, M.F.; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A. Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents. J. Stat. Phys.
**2014**, 157. [Google Scholar] [CrossRef] - Csörgő, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlation signature of a second order QCD phase transition. AIP Conf. Proc.
**2006**, 828, 525–532. [Google Scholar] - Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N. Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett.
**2004**, 93, 152302. [Google Scholar] [CrossRef] [PubMed] - Csanad, M. Lévy femtoscopy with PHENIX at RHIC. arXiv, 2017; arXiv:nucl-ex/1711.05575. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Kharzeev, D.; McLerran, L.D. The Return of the prodigal Goldstone boson. Phys. Rev. D
**1996**, 53, 5028–5033. [Google Scholar] [CrossRef] - Vance, S.E.; Csörgő, T.; Kharzeev, D. Partial U(A)(1) restoration from Bose-Einstein correlations. Phys. Rev. Lett.
**1998**, 81, 2205–2208. [Google Scholar] [CrossRef] - Lacey, R.A. Indications for a critical point in the phase diagram for hot and dense nuclear matter. Nucl. Phys. A
**2016**, 956, 348–351. [Google Scholar] [CrossRef]

**Figure 2.**Extracted chemical freezeout parameters from Reference [3].

**Figure 3.**Centrality and ${m}_{T}$ dependence of Lévy source parameters ($R,\lambda ,\alpha ,\widehat{R}$) in $\sqrt{{s}_{NN}}$ = 62 GeV (

**top**) and $\sqrt{{s}_{NN}}$ = 39 GeV (

**bottom**) Au + Au collisions. The different colors and marker styles are denoting the different centrality ranges. The auxiliary figures at the bottom show the relative systematic uncertainties.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kincses, D.
Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX. *Universe* **2018**, *4*, 11.
https://doi.org/10.3390/universe4010011

**AMA Style**

Kincses D.
Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX. *Universe*. 2018; 4(1):11.
https://doi.org/10.3390/universe4010011

**Chicago/Turabian Style**

Kincses, Dániel.
2018. "Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX" *Universe* 4, no. 1: 11.
https://doi.org/10.3390/universe4010011