Fractal Structure of Hadrons: Experimental and Theoretical Signatures
Abstract
:1. Introduction
Hagedorn’s Self-Consistence Principle
2. The Fractal Structure of Hadrons
2.1. Thermofractals
- 1.
- The total energy is given by
- 2.
- The constituent particles are thermofractals. The ratio is constant for all the subsystems. However, the ratio can vary according to a distribution which is self-similar, ; that is, at different levels of the subsystem hierarchy the distribution of the internal energy is equal to that in the other levels.
- 3.
- At some level n in the hierarchy of subsystems, the phase space is so narrow that one can consider
2.2. Non-Extensive Self-Consistent Thermodynamics
3. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Fermi, E. High energy nuclear events. Prog. Theor. Phys. 1950, 5, 570–583. [Google Scholar] [CrossRef]
- Hagedorn, R. Statistical thermodynamics of strong interactions at high energies. Nuovo Cim. Suppl. 1965, 3, 147–186. [Google Scholar]
- Frautschi, S. Statistical bootstrap model of hadrons. Phys. Rev. D 1971, 3, 2821–2833. [Google Scholar] [CrossRef]
- Venugopalan, R.; Prakash, M. Thermal properties of interacting hadrons. Nucl. Phys. A 1992, 546, 718–760. [Google Scholar] [CrossRef]
- Dashen, R.; Ma, S.; Bernstein, H.J. S-matrix formulation of statistical mechanics. Phys. Rev. 1969, 187, 345–370. [Google Scholar] [CrossRef]
- Cabibbo, N.; Parisi, G. Exponential hadronic spectrum and quark liberation. Phys. Lett. B 1975, 59, 67–69. [Google Scholar] [CrossRef]
- Hagedorn, R. Multiplicities, pT-distribution and the expected hadron → quark-gluon phase transition. La Rivista del Nuovo Cimento 1983, 6, 1–50. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983. [Google Scholar]
- Bialas, A.; Peschanki, R. Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions. Nucl. Phys. B 1986, 273, 703–718. [Google Scholar] [CrossRef]
- Bialas, A.; Peschanki, R. Intermittency in multiparticle production at high energy. Nucl. Phys. B 1988, 308, 857–867. [Google Scholar] [CrossRef]
- Hwa, R.C. Fractal measures in multiparticle production. Phys. Rev. D 1990, 41, 1456–1462. [Google Scholar] [CrossRef]
- Hwa, R.C.; Pan, J. Fractal behavior of multiplicity fluctuations in high-energy collisions. Phys. Rev. D 1992, 45, 1476–1483. [Google Scholar] [CrossRef]
- Hegyi, S. Monofractal density fluctuations and scaling laws for count probabilities and combinants. Phys. Lett. B 1993, 318, 642–647. [Google Scholar] [CrossRef]
- Dremin, I.M.; Hwa, R.C. Quark and gluon jets in QCD: Factorial and cumulant moments. Phys. Rev. D 1994, 49, 5805–5811. [Google Scholar] [CrossRef]
- Dremin, I.M.; Levtchenko, B.B. Fractal ‘hot spots’ and structure functions at low xBj. AIP Conf. Proc. 1993, 276, 454–458. [Google Scholar]
- Hegyi, S.; Csörgö, T. On the intermittency signature of quark-gluon plasma formation. Phys. Lett. B 1992, 296, 256–260. [Google Scholar] [CrossRef]
- Xie, Y.L.; Chen, G.; Wang, J.L.; Liu, Z.H.; Wang, M.J. Scaling properties of multiplicity fluctuations in heavy-ion collisions simulated by AMPT model. Nucl. Phys. A 2013, 920, 33–44. [Google Scholar] [CrossRef]
- Kittel, W.; de Wolf, E.A. Soft Multihadron Dynamics; World Scientific: Singapore, 2005. [Google Scholar]
- De Wolf, E.A.; Dremin, I.M.; Kittel, W. Scaling laws for density correlations and fluctuations in multiparticle dynamics. Phys. Rep. 1996, 270, 1–141. [Google Scholar] [CrossRef]
- Brax, P.; Peschanski, R. Multifractal analysis of intermittency and phase transitions in multiparticle dynamics. Nucl. Phys. B 1990, 346, 65–83. [Google Scholar] [CrossRef]
- Brax, P.; Peschanski, R. Intermittency and hidden phase-transition in multiparticle collisions. Nucl. Phys. B 1991, 353, 165–182. [Google Scholar] [CrossRef]
- Bialas, A.; Zalewski, K. Phase structure of self-similar multiparticle systems and experimental determination of intermittency parameters. Phys. Lett. B 1990, 238, 413–416. [Google Scholar] [CrossRef]
- Ajienko, I.V.; Belokopytov, Y.A.; Böttcher, H.; Botterweck, F.; Chliapnikov, P.V.; Crijns, F.; Garutchava, Z.G. Intermittency patterns in π+ p and K+ p collisions at 250 GeV/c. Phys. Lett. B 1989, 222, 306–310. [Google Scholar] [CrossRef]
- Rasool, M.H.; Ahmad, M.A.; Ahamad, S. Multifractal study and multifractal specific heat of singly charged particles produced in 32 S–Em interactions at 200 AGeV. Chaos Solitons Fractals 2015, 81, 197–202. [Google Scholar] [CrossRef]
- Singh, G.; Jain, P.L. Multifractal analysis of emulsion 197 collisions at 10.6A GeV. Phys. Rev. C 1994, 50, 2508–2515. [Google Scholar] [CrossRef]
- Albajar, C.; Albajar, C.; Allkofer, O.C.; Apsimon, R.; Bartha, S.; Bezaguet, A.; Boehrer, A.; Coughlan, J.A. Multifractal analysis of minimum bias events in GeV pp collisions. Z. Phys. C Part. Field 1992, 56, 37–46. [Google Scholar]
- Ghosh, D.; Deb, A.; Chattopadhyay, R.; Sarkar, S.; Jafry, A.K.; Lahiri, M.; Das, S. Evidence of multifractal nature of target-evaporated slow particles produced in ultrarelativistic heavy ion interactions. Phys. Rev. C 1998, 58, 3553–3559. [Google Scholar] [CrossRef]
- Sarkisyan, E.K.G. Description of local multiplicity fluctuations and genuine multiparticle correlations. Phys. Lett. B 2000, 477, 1–12. [Google Scholar] [CrossRef]
- Lipa, P.; Buschbeck, B. From strong to weak intermittency. Phys. Lett. B 1989, 223, 465–469. [Google Scholar] [CrossRef]
- Tokarev, M.; Zborovsky, I. Top-Quark pT-Spectra at LHC and Flavor Independence of z-Scaling. In Proceedings of the XLVI International Symposium on Multiparticle Dynamics (ISMD2016), Jeju island, Korea, 29 August–2 September 2016; Volume 141, p. 02006. [Google Scholar]
- Zborovský, I.; Tokarev, M.V. Generalized z-scaling in proton-proton collisions at high energies. Phys. Rev. D 2007, 75, 094008. [Google Scholar] [CrossRef]
- Wilk, G.; Włodarczyk, Z. Self-similarity in jet events following from pp collisions at LHC. Phys. Lett. B 2013, 727, 163–167. [Google Scholar] [CrossRef]
- Deppman, A. Thermodynamics with fractal structure, Tsallis statistics, and hadrons. Phys. Rev. D 2016, 93, 054001. [Google Scholar] [CrossRef]
- Deppman, A.; Megías, E. Fractal aspects of hadrons. In Proceedings of the XLVI International Symposium on Multiparticle Dynamics (ISMD2016), Jeju island, Korea, 29 August–2 September 2016; Volume 141, p. 01011. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Borland, L. Ito-Langevin equations within generalized thermostatistics. Phys. Lett. A 1998, 245, 67–72. [Google Scholar] [CrossRef]
- Beck, C. Generalized statistical mechanics of cosmic rays. Phys. A Stat. Mech. Appl. 2004, 331, 173–181. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions. Phys. Rev. C 2009, 79, 054903. [Google Scholar] [CrossRef]
- Wilk, G. Fluctuations, correlations and the nonextensivity. Braz. J. Phys. 2007, 37, 714–716. [Google Scholar] [CrossRef]
- Biró, T.; Barnaföldi, G.G.; Ván, P. Quark-gluon plasma connected to finite heat bath. Eur. Phys. J. A 2013, 49, 110. [Google Scholar] [CrossRef]
- Fowler, G.N.; Weiner, R.M. Incompatibility of an exponential mass spectrum with the existence of a quark phase. Phys. Lett. B 1980, 89, 394–396. [Google Scholar] [CrossRef]
- Deppman, A. Self-consistency in non-extensive thermodynamics of highly excited hadronic states. Phys. A Stat. Mech. Appl. 2012, 391, 6380–6385. [Google Scholar] [CrossRef]
- Megías, E.; Menezes, D.P.; Deppman, A. Non extensive thermodynamics for hadronic matter with finite chemical potentials. Phys. A Stat. Mech. Appl. 2015, 421, 15–24. [Google Scholar] [CrossRef]
- Bediaga, I.; Curado, E.M.F.; de Miranda, J.M. A nonextensive thermodynamical equilibrium approach in e+ e- → hadrons. Phys. A Stat. Mech. Appl. 2000, 286, 156–163. [Google Scholar] [CrossRef]
- Beck, C. Non-extensive statistical mechanics and particle spectra in elementary interactions. Phys. A Stat. Mech. Appl. 2000, 286, 164–180. [Google Scholar] [CrossRef]
- Sena, I.; Deppman, A. Systematic analysis of pT-distributions in p+ p collisions. Eur. Phys. J. A 2013, 49, 17. [Google Scholar] [CrossRef]
- Cleymans, J.; Worku, D.J. The Tsallis distribution in proton–proton collisions at =0.9 TeV at the LHC. Phys. G Nucl. Part. Phys. 2012, 39, 025006. [Google Scholar] [CrossRef]
- Azmi, M.D.; Cleymans, J. Transverse momentum distributions in proton–proton collisions at LHC energies and Tsallis thermodynamics. J. Phys. G 2014, 41, 065001. [Google Scholar] [CrossRef]
- Azmi, M.D.; Cleymans, J. The Tsallis distribution at large transverse momenta. Eur. Phys. J. C 2015, 75, 430. [Google Scholar] [CrossRef]
- Wong, C.-Y.; Wilk, G.; Cirto, L.; Tsallis, C. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and pp collisions. Phys. Rev. D 2015, 91, 114027. [Google Scholar] [CrossRef]
- Wong, C.-Y.; Wilk, G. Tsallis fits to p T spectra and multiple hard scattering in pp collisions at the LHC. Phys. Rev. D 2013, 87, 114007. [Google Scholar] [CrossRef]
- Rybczyński, M.; Włodarczyk, Z.; Wilk, G. On the possibility of q-scaling in high-energy production processes. J. Phys. G Nucl. Part. Phys. 2012, 39, 095004. [Google Scholar] [CrossRef]
- Marques, L.; Andrade-II, E.; Deppman, A. Nonextensivity of hadronic systems. Phys. Rev. D 2013, 87, 114022. [Google Scholar] [CrossRef]
- Marques, L.; Cleymans, J.; Deppman, A. Description of high-energy pp collisions using Tsallis thermodynamics: Transverse momentum and rapidity distributions. Phys. Rev. D 2015, 91, 054025. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Masoodi, A.A. Production of K*(892)0 and φ(1020) in pp collisions at TeV. Eur. Phys. J. C 2012, 72, 2183. [Google Scholar] [CrossRef]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R. Strange particle production in pp collisions at and 7 TeV. J. High Energy Phys. 2011, 2011, 64. [Google Scholar] [CrossRef]
- Self-affine fractality in π+p and K+p collisions at 250 GeV/c. Phys. Lett. B 1996, 382, 305–311.
- Deppman, A. Properties of hadronic systems according to the nonextensive self-consistent thermodynamics. J. Phys. G 2014, 41, 055108. [Google Scholar] [CrossRef]
- Kiess, T.E. A resolution of a metric singularity associated with the introduction of Λ into static spherically symmetric systems. Int. J. Mod. Phys. D 2017, 26, 1750039. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Biyajima, M.; Suzuki, N. Analyses of whole transverse momentum distributions in pp and pp collisions by using a modified version of Hagedorn’s formula. Int. J. Mod. Phys. A 2017, 32, 1750057. [Google Scholar] [CrossRef]
- Parvan, A.S. Ultrarelativistic transverse momentum distribution of the Tsallis statistics. Eur. Phys. J. A 2017, 53. [Google Scholar] [CrossRef]
- Zheng, H.; Bonasera, A. Systematic analysis of hadron spectra in p + p collisions using Tsallis distributions. Phys. Rev. D 2015, 92, 074009. [Google Scholar] [CrossRef]
- Biro, G.; Barnafoldi, G.G.; Biro, T.S.; Urmossy, K.; Takacs, A. Systematic analysis of the non-extensive statistical approach in high energy particle collisions—Experiment vs. theory. Entropy 2017, 19, 88. [Google Scholar] [CrossRef]
- Li, B.; Bai, T.; Guo, Y.; Liu, F.H. On J/ψ and Υ Transverse Momentum Distributions in High Energy Collisions. Adv. High Energy Phys. 2017, 2017, 9383540. [Google Scholar] [CrossRef]
- Lastovicka, T. Self-similar Properties of the Proton Structure at low x. Eur. Phys. J. C Part. Fields 2002, 24, 529–533. [Google Scholar] [CrossRef]
- Khuntia, A.; Tripathy, S.; Sahoo, R.; Cleymans, J. Multiplicity dependence of non-extensive parameters for strange and multi-strange particles in proton-proton collisions at TeV at the LHC. Eur. Phys. J. A 2017, 53, 103. [Google Scholar] [CrossRef]
- Grigoryan, S. Using the Tsallis distribution for hadron spectra in pp collisions: Pions and quarkonia at = 5–13,000 GeV. Phys. Rev. D 2017, 95, 056021. [Google Scholar] [CrossRef]
- Menezes, D.P.; Deppman, A.; Megias, E.; Castro, L.B. Non-extensive thermodynamics and neutron star properties. Eur. Phys. J. A 2015, 51, 155. [Google Scholar] [CrossRef]
- Cardoso, P.H.G.; da Silva, T.N.; Deppman, A.; Menezes, D.P. Quark matter revisited with non extensive MIT bag model. arXiv 2017, arXiv:1706.02183. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deppman, A. Fractal Structure of Hadrons: Experimental and Theoretical Signatures. Universe 2017, 3, 62. https://doi.org/10.3390/universe3030062
Deppman A. Fractal Structure of Hadrons: Experimental and Theoretical Signatures. Universe. 2017; 3(3):62. https://doi.org/10.3390/universe3030062
Chicago/Turabian StyleDeppman, Airton. 2017. "Fractal Structure of Hadrons: Experimental and Theoretical Signatures" Universe 3, no. 3: 62. https://doi.org/10.3390/universe3030062
APA StyleDeppman, A. (2017). Fractal Structure of Hadrons: Experimental and Theoretical Signatures. Universe, 3(3), 62. https://doi.org/10.3390/universe3030062