Where Does the Physics of Extreme Gravitational Collapse Reside?
Abstract
:1. Introduction
2. Black Holes and Spacetime Singularities: The Standard GR Picture
2.1. Event Horizons
2.2. Singularities
3. Black Holes and Spacetime Singularities: Ultraviolet Effects beyond GR
3.1. Trapping Horizons
3.2. Preventing Singularities
4. Ultraviolet Effects: Phenomenological Considerations
4.1. Horizon Predominance
4.2. Preponderance of the Singularity Regularization
5. Effective Bounces, Black-Hole to White-Hole Transitions and Shock Waves
5.1. Collapse from Infinity and Homogenous Thin-Layer Transition
5.2. Non-Perturbative Ultraviolet Effects
5.3. Collapse from a Finite Radius and Triangular-Shaped Transition
5.4. Short-Lived Trapping Horizons
5.5. Short Transients and the Propagation of Non-Perturbative Ultraviolet Effects
6. Physical and Observational Consequences
6.1. Towards New Figures of Equilibrium
6.2. Energetics of the Transient Phase
6.3. Ripples from the Transient Phase
6.4. Recent Detection of Gravitational Waves from Coalescing Black Holes
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schödel, R.; Ott, T.; Genzel, R.; Hofmann, R.; Lehnert, M.; Eckart, A.; Mouawad, N.; Alexander, T.; Reid, M.J.; Lenzen, R.; et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 2002, 419, 694–696. [Google Scholar] [CrossRef] [PubMed]
- Schödel, R.; Ott, T.; Genzel, R.; Eckart, A.; Mouawad, N.; Alexander, T. Stellar dynamics in the central arcsecond of our galaxy. Astrophys. J. 2003, 596, 1015–1034. [Google Scholar] [CrossRef]
- Ghez, A.M.; Salim, S.; Hornstein, S.D.; Tanner, A.; Lu, J.R.; Morris, M.; Becklin, E.E.; Duchêne, G. Stellar orbits around the galactic center black hole. Astrophys. J. 2005, 620, 744–757. [Google Scholar] [CrossRef]
- Meyer, L.; Ghez, A.M.; Schödel, R.; Yelda, S.; Boehle, A.; Lu, J.R.; Do, T.; Morris, M.R.; Becklin, E.E.; Matthews, K. The shortest-known-period star orbiting our galaxy’s supermassive black hole. Science 2012, 338, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Abramowicz, M.A.; Kluźniak, W.; Lasota, J.P. No observational proof of the black-hole event-horizon. Astron. Astrophys. 2002, 396, L31–L34. [Google Scholar] [CrossRef]
- Fryer, C.L.; New, K.C. Gravitational waves from gravitational collapse. Living Rev. Relativ. 2011, 14, 1. [Google Scholar] [CrossRef]
- Hawking, S. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Hawking, S.; Ellis, G. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Hawking, S. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S.W. Information loss in black holes. Phys. Rev. D 2005, 72, 084013. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black holes: Complementarity or firewalls? J. High Energy Phys. 2013, 2013, 1–20. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Pirandola, S.; Zyczkowski, K. Better late than never: Information retrieval from black holes. Phys. Rev. Lett. 2013, 110, 101301. [Google Scholar] [CrossRef] [PubMed]
- Barceló, C.; Garay, L.J.; Jannes, G. Quantum non-gravity and stellar collapse. Found. Phys. 2011, 41, 1532–1541. [Google Scholar] [CrossRef] [Green Version]
- Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Mutiny at the white-hole district. Int. J. Mod. Phys. D 2014, 23, 42022. [Google Scholar] [CrossRef]
- Barceló, C.; Carballo-Rubio, R.; Garay, L.J.; Jannes, G. The lifetime problem of evaporating black holes: Mutiny or resignation. Class. Quantum Grav. 2015, 32, 035012. [Google Scholar] [CrossRef]
- Frolov, V.P.; Vilkovisky, G.A. Quantum gravity removes classical singularities and shortens the life of black holes. In Proceedings of the Second Marcel Grossmann Meeting on the Recent Developments of General Relativity (in Honor of Albert Einstein), Trieste, Italy, 5–11 July 1979.
- Frolov, V.P.; Vilkovisky, G.A. Spherically symmetric collapse in quantum gravity. Phys. Lett. B 1981, 106, 307–313. [Google Scholar] [CrossRef]
- Ambrus, M.; Hájíček, P. Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys. Rev. D 2005, 72, 064025. [Google Scholar] [CrossRef]
- Oppenheimer, J.R.; Volkoff, G.M. On massive neutron cores. Phys. Rev. 1939, 55, 374–381. [Google Scholar] [CrossRef]
- Rhoades, C.E.; Ruffini, R. Maximum mass of a neutron star. Phys. Rev. Lett. 1974, 32, 324–327. [Google Scholar] [CrossRef]
- Bombaci, I. The maximum mass of a neutron star. Astron. Astrophys. 1996, 305, 871–877. [Google Scholar]
- Oppenheimer, J.; Snyder, H. On continued gravitational contraction. Phys. Rev. 1939, 56, 455–459. [Google Scholar] [CrossRef]
- Martel, K.; Poisson, E. Regular coordinate systems for Schwarzschild and other spherical space-times. Am. J. Phys. 2001, 69, 476–480. [Google Scholar] [CrossRef]
- Chruściel, P.T.; Costa, J.L.; Heusler, M. Stationary black holes: Uniqueness and beyond. Living Rev. Relativ. 2012, 15, 7. [Google Scholar] [CrossRef]
- Penrose, R. Cycles of Time: An Extraordinary New View of the Universe; Bodley Head: London, UK, 2010. [Google Scholar]
- Senovilla, J.M.M.; Garfinkle, D. The 1965 Penrose singularity theorem. 2014; arXiv:gr-qc/1410.5226. [Google Scholar]
- Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef]
- Khalatnikov, I.M.; Lifshitz, E.M. General cosmological solution of the gravitational equations with a singularity in time. Phys. Rev. Lett. 1970, 24, 76–79. [Google Scholar] [CrossRef]
- Belinskiĭ, V.A.; Lifshitz, E.M.; Khalatnikov, I.M. Reviews of topical problems: Oscillatory approach to the singular point in relativistic cosmology. Sov. Phys. Uspekhi 1971, 13, 745–765. [Google Scholar] [CrossRef]
- Berger, B.K. Numerical approaches to spacetime singularities. Living Rev. Relativ. 2002, 5, 1. [Google Scholar] [CrossRef]
- Ashtekar, A.; Henderson, A.; Sloan, D. Hamiltonian formulation of the Belinskii-Khalatnikov-Lifshitz conjecture. Phys. Rev. D 2011, 83, 084024. [Google Scholar] [CrossRef]
- Guo, J.Q.; Wang, D.; Frolov, A.V. Spherical collapse in f(R) gravity and the Belinskii-Khalatnikov-Lifshitz conjecture. Phys. Rev. D 2014, 90, 024017. [Google Scholar] [CrossRef]
- Guo, J.Q.; Joshi, P.S. Interior dynamics of neutral and charged black holes. Phys. Rev. D 2015, 92, 064013. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Hawking, S. Black hole explosions. Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Information preservation and weather forecasting for black holes. 2014; arXiv:hep-th/1401.5761. [Google Scholar]
- Barceló, C.; Visser, M.; Ahluwalia, D.V. Twilight for the energy conditions? Int. J. Mod. Phys. D 2002, 11, 1553–1560. [Google Scholar] [CrossRef]
- Ford, L. The Classical singularity theorems and their quantum loop holes. Int. J. Theor. Phys. 2003, 42, 1219–1227. [Google Scholar] [CrossRef]
- Fowler, R.H. On dense matter. Mon. Not. R. Astron. Soc. 1926, 87, 114–122. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The maximum mass of ideal white dwarfs. Astrophys. J. 1931, 74, 81–82. [Google Scholar] [CrossRef]
- Parker, L.; Fulling, S.A. Quantized matter fields and the avoidance of singularities in general relativity. Phys. Rev. D 1973, 7, 2357–2374. [Google Scholar] [CrossRef]
- Novello, M.; Bergliaffa, S.E.P. Bouncing cosmologies. Phys. Rep. 2008, 463, 127–213. [Google Scholar] [CrossRef]
- Ashtekar, A. Gravity and the quantum. New J. Phys. 2005, 7, 198. [Google Scholar] [CrossRef]
- Banerjee, K.; Calcagni, G.; Martín-Benito, M. Introduction to loop quantum cosmology. Symmetry Integr. Geom. 2012, 8, 16. [Google Scholar] [CrossRef]
- Kuchar, K.V.; Ryan, M.P., Jr. Is minisuperspace quantization valid?: Taub in mixmaster. Phys. Rev. D 1989, 40, 3982–3996. [Google Scholar] [CrossRef]
- Barbero G., J.F.; Villaseñor, E.J.S. Quantization of midisuperspace models. Living Rev. Relativ. 2010, 13, 6. [Google Scholar] [CrossRef]
- Bojowald, M. Absence of a singularity in loop quantum cosmology. Phys. Rev. Lett. 2001, 86, 5227–5230. [Google Scholar] [CrossRef] [PubMed]
- Taveras, V. Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field. Phys. Rev. D 2008, 78, 064072. [Google Scholar] [CrossRef]
- Broda, B. One-loop quantum gravity repulsion in the early universe. Phys. Rev. Lett. 2011, 106, 101303. [Google Scholar] [CrossRef] [PubMed]
- Abedi, J.; Arfaei, H. Obstruction of black hole singularity by quantum field theory effects. 2015; arXiv:gr-qc/1506.05844. [Google Scholar]
- Sakharov, A.D. The initial stage of an expanding universe and the appearance of a nonuniform distribution of matter. Sov. J. Exp. Theor. Phys. 1966, 22, 241–249. [Google Scholar]
- Gliner, E.B. Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. Sov. J. Exp. Theor. Phys. 1966, 22, 378. [Google Scholar]
- Bardeen, J. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, 9–13 September 1968; p. 174.
- Borde, A. Open and closed universes, initial singularities and inflation. Phys. Rev. D 1994, 50, 3692–3702. [Google Scholar] [CrossRef]
- Borde, A. Regular black holes and topology change. Phys. Rev. D 1997, 55, 7615–7617. [Google Scholar] [CrossRef]
- Dymnikova, I. Vacuum nonsingular black hole. Gen. Rel. Grav. 1992, 24, 235–242. [Google Scholar] [CrossRef]
- Mars, M.; Martín-Prats, M.M.; Senovilla, J.M.M. Models of regular Schwarzschild black holes satisfying weak energy conditions. Class. Quantum Grav. 1996, 13, L51. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Spherically symmetric false vacuum: No-go theorems and global structure. Phys. Rev. D 2001, 64, 064013. [Google Scholar] [CrossRef]
- Hayward, S.A. Formation and evaporation of nonsingular black holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef] [PubMed]
- Olmo, G.J.; Rubiera-Garcia, D.; Sanchis-Alepuz, H. Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity. Eur. Phys. J. C 2014, 74, 2804. [Google Scholar] [CrossRef] [PubMed]
- Olmo, G.J.; Rubiera-Garcia, D. Nonsingular black holes in $f(R)$ theories. 2015; arXiv:hep-th/1509.02430. [Google Scholar]
- Ashtekar, A.; Bojowald, M. Quantum geometry and the Schwarzschild singularity. Class. Quantum Grav. 2006, 23, 391–411. [Google Scholar] [CrossRef]
- Vachaspati, T.; Stojkovic, D. Quantum radiation from quantum gravitational collapse. Phys. Lett. B. 2008, 663, 107–110. [Google Scholar] [CrossRef]
- Ashtekar, A.; Taveras, V.; Varadarajan, M. Information is not lost in the evaporation of 2D black holes. Phys. Rev. Lett. 2008, 100, 211302. [Google Scholar] [CrossRef] [PubMed]
- Husain, V. Critical behaviour in quantum gravitational collapse. 2008; arXiv:gr-qc/0808.0949. [Google Scholar]
- Ziprick, J.; Kunstatter, G. Dynamical singularity resolution in spherically symmetric black hole formation. Phys. Rev. D 2009, 80, 024032. [Google Scholar] [CrossRef]
- Hossenfelder, S.; Smolin, L. Conservative solutions to the black hole information problem. Phys. Rev. D 2010, 81, 064009. [Google Scholar] [CrossRef]
- Kreienbuehl, A.; Husain, V.; Seahra, S.S. Modified general relativity as a model for quantum gravitational collapse. Class. Quantum Grav. 2012, 29, 095008. [Google Scholar] [CrossRef]
- Kawai, H.; Matsuo, Y.; Yokokura, Y. A Self-consistent model of the black hole evaporation. Int. J. Mod. Phys. A 2013, 28, 1350050. [Google Scholar] [CrossRef]
- Kawai, H.; Yokokura, Y. Phenomenological description of the interior of the Schwarzschild black hole. Int. J. Mod. Phys. A 2015, 30, 50091. [Google Scholar] [CrossRef]
- Torres, R. Singularity-free gravitational collapse and asymptotic safety. Phys. Lett. B 2014, 733, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P. Do black holes exist? In Proceedings of the 18th International Seminar on High Energy Physics (Quarks 2014), Suzdal, Russia, 2–8 June 2014.
- Bojowald, M. Information loss, made worse by quantum gravity? Front. Phys. 2015, 3, 33. [Google Scholar] [CrossRef]
- Gambini, R.; Olmedo, J.; Pullin, J. Quantum black holes in loop quantum gravity. Class. Quantum Grav. 2014, 31, 095009. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Quantum shells in a quantum space-time. Class. Quantum Grav. 2015, 32, 035003. [Google Scholar] [CrossRef]
- Torres, R.; Fayos, F. On the quantum corrected gravitational collapse. Phys. Lett. B 2015, 747, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Vidotto, F. Planck stars. Int. J. Mod. Phys. D 2014, 23, 42026. [Google Scholar] [CrossRef]
- Barrau, A.; Rovelli, C. Planck star phenomenology. Phys. Lett. B 2014, 739, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Bambi, C.; Malafarina, D.; Modesto, L. Non-singular quantum-inspired gravitational collapse. Phys. Rev. D 2013, 88, 044009. [Google Scholar] [CrossRef]
- Liu, Y.; Malafarina, D.; Modesto, L.; Bambi, C. Singularity avoidance in quantum-inspired inhomogeneous dust collapse. Phys. Rev. D 2014, 90, 044040. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Modesto, L.; Bambi, C. Can static regular black holes form from gravitational collapse? Eur. Phys. J. C 2015, 75, 96. [Google Scholar] [CrossRef]
- Modak, S.K.; Ortíz, L.; Peña, I.; Sudarsky, D. Nonparadoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D 2015, 91, 124009. [Google Scholar] [CrossRef]
- Modak, S.K.; Ortíz, L.; Peña, I.; Sudarsky, D. Black hole evaporation: Information loss but no paradox. Gen. Relativ. Gravit. 2015, 47, 120. [Google Scholar] [CrossRef]
- Hawking, S.W. The information paradox for black holes. 2015; arXiv:hep-th/1509.01147. [Google Scholar]
- Hooft, G.t. Diagonalizing the black hole information retrieval process. 2015; arXiv:gr-qc/1509.01695. [Google Scholar]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Soft hair on black holes. 2016; arXiv:hep-th/1601.00921. [Google Scholar]
- Dai, D.C.; Stojkovic, D. Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object. 2016; arXiv:gr-qc/1601.07921. [Google Scholar]
- Roman, T.; Bergmann, P. Stellar collapse without singularities? Phys. Rev. D 1983, 28, 1265–1277. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M. Black hole evaporation: A Paradigm. Class. Quantum Grav. 2005, 22, 3349–3362. [Google Scholar] [CrossRef]
- Bambi, C.; Malafarina, D.; Modesto, L. Terminating black holes in asymptotically free quantum gravity. Eur. Phys. J. C 2014, 74, 2767. [Google Scholar] [CrossRef]
- Bardeen, J.M. Black hole evaporation without an event horizon. 2014; arXiv:gr-qc/1406.4098. [Google Scholar]
- Kawai, H.; Yokokura, Y. Interior of black holes and information recovery. Phys. Rev. D 2016, 93, 044011. [Google Scholar] [CrossRef]
- Visser, M. Physical observability of horizons. Phys. Rev. D 2014, 90, 127502. [Google Scholar] [CrossRef]
- Samtleben, D.; Staggs, S.; Winstein, B. The cosmic microwave background for pedestrians: A review for particle and nuclear physicists. Ann. Rev. Nucl. Part. Sci. 2007, 57, 245–283. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. New cosmological constraints on primordial black holes. Phys. Rev. D 2010, 81, 104019. [Google Scholar] [CrossRef]
- Stephens, C.; ’t Hooft, G.; Whiting, B. Black hole evaporation without information loss. Class. Quantum Grav. 1994, 11, 621–648. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Sonego, S.; Visser, M. Hawking-like radiation does not require a trapped region. Phys. Rev. Lett. 2006, 97, 171301. [Google Scholar] [CrossRef] [PubMed]
- Barbado, L.; Barceló, C.; Garay, L.; Jannes, G. The trans-Planckian problem as a guiding principle. J. High Energ. Phys. 2011, 2011, 112. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Analogue gravity. Living Rev. Relativ. 2005, 8, 12. [Google Scholar] [CrossRef]
- Steinhauer, J. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nat. Phys. 2014, 10, 864–869. [Google Scholar] [CrossRef]
- Steinhauer, J. Observation of thermal Hawking radiation and its entanglement in an analogue black hole. 2015; arXiv:gr-qc/1510.00621. [Google Scholar]
- Unruh, W.G. Has Hawking radiation been measured? Found. Phys. 2014, 44, 532–545. [Google Scholar] [CrossRef]
- Goenner, H.F.M. What kind of science is cosmology? Ann. Phys. 2010, 522, 389–418. [Google Scholar] [CrossRef]
- Susskind, L.; Thorlacius, L.; Uglum, J. The Stretched horizon and black hole complementarity. Phys. Rev. D 1993, 48, 3743–3761. [Google Scholar] [CrossRef]
- Mathur, S. The fuzzball proposal for black holes: An elementary review. Fortsch. Phys. 2005, 53, 793–827. [Google Scholar] [CrossRef]
- Mathur, S.D. The information paradox: A pedagogical introduction. Class. Quantum Grav. 2009, 26, 224001. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C. Black holes as critical point of quantum phase transition. Eur. Phys. J. C 2014, 74, 2752. [Google Scholar] [CrossRef] [PubMed]
- Dvali, G.; Gomez, C.; Lüst, D. Classical limit of black hole quantum N-portrait and BMS symmetry. Phys. Lett. B 2016, 753, 173–177. [Google Scholar] [CrossRef]
- Giddings, S.B. Black holes and massive remnants. Phys. Rev. D 1992, 46, 1347–1352. [Google Scholar] [CrossRef]
- Giddings, S.B. Comments on information loss and remnants. Phys. Rev. D 1994, 49, 4078–4088. [Google Scholar] [CrossRef]
- Haggard, H.M.; Rovelli, C. Black hole fireworks: Quantum-gravity effects outside the horizon spark black to white hole tunneling. 2014; arXiv:gr-qc/1407.0989. [Google Scholar]
- Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Black holes turn white fast, otherwise stay black: No half measures. J. High Energ. Phys. 2016, 2016, 157. [Google Scholar] [CrossRef]
- Woosley, S.E.; Heger, A.; Weaver, T.A. The evolution and explosion of massive stars. Rev. Mod. Phys. 2002, 74, 1015–1071. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Sonego, S.; Visser, M. Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 2008, 77, 044032. [Google Scholar] [CrossRef]
- Kanai, Y.; Siino, M.; Hosoya, A. Gravitational collapse in Painlevé-Gullstrand coordinates. Prog. Theor. Phys. 2011, 125, 1053–1065. [Google Scholar] [CrossRef]
- Grubb, G. Distributions and Operators; Graduate Texts in Mathematics; Springer: Berlin, Germany, 2009. [Google Scholar]
- Eardley, D. Death of white holes in the early universe. Phys. Rev. Lett. 1974, 33, 442–444. [Google Scholar] [CrossRef]
- Frolov, V.; Novikov, I. Black Hole Physics: Basic Concepts and New Developments; Fundamental Theories of Physics; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Barrabès, C.; Brady, P.; Poisson, E. Death of white holes. Phys. Rev. D 1993, 47, 2383–2387. [Google Scholar] [CrossRef]
- Ori, A.; Poisson, E. Death of cosmological white holes. Phys. Rev. D 1994, 50, 6150–6157. [Google Scholar] [CrossRef]
- Blau, S.K.; Guth, A.H. The stability of the white hole horizon. Available online: http://gravityresearchfoundation.org/pdf/awarded/1989/blau_guth.pdf (accessed on 5 May 2016).
- Blau, S.K. Dray-’t Hooft geometries and the death of white holes. Phys. Rev. D 1989, 39, 2901–2903. [Google Scholar] [CrossRef]
- Szekeres, P. Global description of spherical collapsing and expanding dust clouds. Nuovo Cim. B 1973, 17, 187–195. [Google Scholar] [CrossRef]
- Lake, K.; Roeder, R. Blue-shift surfaces and the stability of white holes. Lett. Nuovo Cim. 1976, 16, 17–21. [Google Scholar] [CrossRef]
- Zeldovich, Y.; Novikov, I.; Starobinsky, A. Quantum effects in white holes. Zh. Eksp. Teor. Fiz. 1974, 66, 1897–1910. [Google Scholar]
- Hajicek, P.; Kiefer, C. Singularity avoidance by collapsing shells in quantum gravity. Int. J. Mod. Phys. D 2001, 10, 775–780. [Google Scholar] [CrossRef]
- Hájícek, P. Quantum theory of gravitational collapse (lecture notes on quantum conchology). In Quantum Gravity: From Theory to Experimental Search; Giulini, D., Kiefer, C., Laemmerzahl, C., Eds.; Lecture Notes in Physics; Springer Verlag: Berlin, Germany, 2003; Volume 631, pp. 255–299. [Google Scholar]
- Ambrus, M. How Long Does It Take until a Quantum System Reemerges after a Gravitational Collapse? Ph.D. Thesis, Bern University, Bern, Switzerland, 2004. [Google Scholar]
- Campiglia, M.; Gambini, R.; Olmedo, J.; Pullin, J. Quantum self-gravitating collapsing matter in a quantum geometry. 2016; arXiv:gr-qc/1601.05688. [Google Scholar]
- Visser, M.; Barceló, C.; Liberati, S.; Sonego, S. Small, dark, and heavy: But is it a black hole? 2009; arXiv:gr-qc/0902.0346. [Google Scholar]
- Narayan, R.; Heyl, J.S. On the lack of type I X-ray bursts in black hole X-ray binaries: Evidence for the event horizon? Astrophys. J. 2002, 574, L139–L142. [Google Scholar] [CrossRef]
- Narayan, R.; McClintock, J.E. Advection-dominated accretion and the black hole event horizon. New Astron. Rev. 2008, 51, 733–751. [Google Scholar] [CrossRef]
- Broderick, A.E.; Narayan, R. Where are all the gravastars? Limits upon the gravastar model from accreting black holes. Class. Quantum Gravity 2007, 24, 659–666. [Google Scholar] [CrossRef]
- Vincent, F.H.; Meliani, Z.; Grandclement, P.; Gourgoulhon, E.; Straub, O. Imaging a boson star at the Galactic center. 2015; arXiv:gr-qc/1510.04170. [Google Scholar]
- Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 2004, 76, 1143–1210. [Google Scholar] [CrossRef]
- MacFadyen, A.; Woosley, S. Collapsars: Gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 1999, 524, 262. [Google Scholar] [CrossRef]
- Mobberley, M. Cataclysmic Cosmic Events and How to Observe Them; Astronomers’ Observing Guides; Springer: Berlin, Germany, 2009. [Google Scholar]
- Frolov, V.; Zelnikov, A. Introduction to Black Hole Physics; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Christodoulou, D.; Ruffini, R. Reversible transformations of a charged black hole. Phys. Rev. D 1971, 4, 3552–3555. [Google Scholar] [CrossRef]
- Damour, T.; Ruffini, R. Quantum electrodynamical effects in Kerr-Newmann geometries. Phys. Rev. Lett. 1975, 35, 463–466. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M.S.; Zhang, B.-B.; Hui, C.M.; Jenke, P.; Racusin, J.; Wilson-Hodge, C.A.; Bhat, P.N.; et al. Fermi GBM observations of LIGO gravitational wave event GW150914. 2016; arXiv:astro-ph.HE/1602.03920. [Google Scholar]
- Abramowicz, M.A.; Bulik, T.; Ellis, G.F.R.; Meissner, K.A.; Wielgus, M. The electromagnetic afterglows of gravitational waves as a test for Quantum Gravity. 2016; arXiv:gr-qc/1603.07830. [Google Scholar]
- Giddings, S.B. Possible observational windows for quantum effects from black holes. Phys. Rev. D 2014, 90, 124033. [Google Scholar] [CrossRef]
- Konoplya, R.; Zhidenko, A. Detection of gravitational waves from black holes: Is there a window for alternative theories? Phys. Lett. B 2016, 756, 350–353. [Google Scholar] [CrossRef]
- Malafarina, D.; Joshi, P.S. Electromagnetic counterparts to gravitational waves from black hole mergers and naked singularities. 2016; arXiv:gr-qc/1603.02848. [Google Scholar]
- Cardoso, V.; Franzin, E.; Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? 2016; arXiv:gr-qc/1602.07309. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Where Does the Physics of Extreme Gravitational Collapse Reside? Universe 2016, 2, 7. https://doi.org/10.3390/universe2020007
Barceló C, Carballo-Rubio R, Garay LJ. Where Does the Physics of Extreme Gravitational Collapse Reside? Universe. 2016; 2(2):7. https://doi.org/10.3390/universe2020007
Chicago/Turabian StyleBarceló, Carlos, Raúl Carballo-Rubio, and Luis J. Garay. 2016. "Where Does the Physics of Extreme Gravitational Collapse Reside?" Universe 2, no. 2: 7. https://doi.org/10.3390/universe2020007