Primordial Gravitational Wave Birefringence in a de Sitter Background with Chern–Simons Coupling
Abstract
1. Introduction
2. CS-Modified Gravity
3. Perturbed Field Equations
3.1. Operator Diagonalization and Decoupling of Tensor Modes
3.2. Source Terms in the Symmetric/Antisymmetric Basis
4. Pontryagin Constraint
5. Form of the Scalar Field for the De Sitter Metric
5.1. Mode Decomposition
5.2. Rescaling
5.3. Solution
6. Specific Solutions to the Field Equations
6.1. Sub-Horizon Limit ()
- For (scalar and gravitational wave in phase), , and the correction is mostly imaginary—producing amplitude birefringence.
- For , , the correction is mostly real—producing velocity birefringence.
- For general , both amplitude and velocity birefringence coexist.
6.2. Particular Solution
6.3. Super-Horizon Limit ()
6.4. Birefringence Effects in Sub- and Super-Horizon Regimes
7. Particular Solution and Flat-Spacetime Limit
7.1. Flux in the Sub-Horizon Regime
- : There is a quadratic dependence on the scalar amplitude.
- : Short wavelength modes radiate less efficiently.
- : The particular-solution flux grows as conformal time approaches , equivalently as cosmic time increases (because the sourced amplitude redshifts like ).
- : The expression has an explicit dependence on the de Sitter radius.
7.2. Flat-Spacetime Limit
7.3. Flux in the Super-Horizon Regime
8. Phase Difference Between Helicity States
8.1. Sub-Horizon Regime
8.2. Super-Horizon Regime
9. Amplitude Birefringence
9.1. Sub-Horizon Regime
9.2. Super-Horizon Regime
10. Dark Matter Relations and Modifications
10.1. Massive Chern–Simons Dark Matter Field
10.2. Modifications in the Sub-Horizon Limit
10.3. Late-Time Behavior And Consistency
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Background Metric Calculations
Appendix B. Perturbed Metric Calculations
Appendix C. Cotton Tensor Calculations
Appendix C.1. Time–Time Cotton Tensor
Appendix C.2. Mixed Cotton Tensor
Appendix C.3. Spatial Cotton Tensor
Appendix C.4. Non-Vanishing Cotton Tensor Elements
References
- de Sitter, W. On the relativity of inertia. Remarks concerning Einstein’s latest hypothesis. Proc. R. Neth. Acad. Arts Sci. 1917, 19, 1217. [Google Scholar]
- Hawking, S.W. The unpredictability of quantum gravity. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Mukhanov, V.; Chibisov, G. Quantum fluctuations and a nonsingular universe. JETP Lett. 1981, 33, 532. [Google Scholar]
- Starobinsky, A.A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 1982, 117, 175. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Steinhardt, P.J.; Turner, M.S. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 1983, 28, 679. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. [Planck Collaboration] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Boenish, H.; Bullock, E.; Buza, V.; Cheshire, J.R.C., IV; Connors, J.; Cornelison, J.; Crumrine, M.; Cukierman, A.; Denison, E.V.; Dierickx, M.; et al. [BICEP/Keck Collaboration] Improved constraints on primordial gravitational waves using Planck, WMAP, and BICEP/Keck observations through the 2018 observing season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Chern, S.-S.; Simons, J. Characteristic forms and geometric invariants. Ann. Math. 1974, 99, 48. [Google Scholar] [CrossRef]
- Jackiw, R.; Pi, S.-Y. Chern-Simons modification of general relativity. Phys. Rev. D 2003, 68, 104012. [Google Scholar] [CrossRef]
- Yunes, N.; Pretorius, F. Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation. Phys. Rev. D 2009, 79, 084043. [Google Scholar] [CrossRef]
- Yunes, N.; Hughes, S.A. Binary pulsar constraints on the parametrized post-Einsteinian framework. Phys. Rev. D 2010, 82, 082002. [Google Scholar] [CrossRef]
- Alexander, S.; Finn, L.S.; Yunes, N. Gravitational-wave probe of effective quantum gravity. Phys. Rev. D 2008, 78, 066005. [Google Scholar] [CrossRef]
- Lue, A.; Wang, L.; Kamionkowski, M. Cosmological signature of new parity-violating interactions. Phys. Rev. Lett. 1999, 83, 1506. [Google Scholar] [CrossRef]
- Contaldi, C.R.; Magueijo, J.; Smolin, L. Anomalous cosmic-microwave-background polarization and gravitational chirality. Phys. Rev. Lett. 2008, 101, 141101. [Google Scholar] [CrossRef]
- Dyda, S.; Flanagan, É.; Kamionkowski, M. Vacuum instability in Chern-Simons gravity. Phys. Rev. D 2012, 86, 124031. [Google Scholar] [CrossRef]
- Bunch, T.S.; Davies, P.C.W. Quantum field theory in de Sitter space: Renormalization by point-splitting. Proc. R. Soc. Lond. A 1978, 360, 117. [Google Scholar] [CrossRef]
- Isaacson, R.A. Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Phys. Rev. 1968, 166, 1263. [Google Scholar] [CrossRef]
- Isaacson, R.A. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys. Rev. 1968, 166, 1272. [Google Scholar] [CrossRef]
- Zhao, W.; Zhu, T.; Qiao, J.; Wang, A. Waveform of gravitational waves in the general parity-violating gravities. Phys. Rev. D 2020, 101, 024002. [Google Scholar] [CrossRef]
- Hwang, J. Gravitational wave spectra from pole-like inflations based on generalized gravity theories. Class. Quantum Grav. 1998, 15, 1401. [Google Scholar] [CrossRef]
- Choi, K.; Hwang, J.; Hwang, K. String theoretic axion coupling and the evolution of cosmic structures. Phys. Rev. D 2000, 61, 084026. [Google Scholar] [CrossRef]
- Turner, M.S. Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D 1983, 28, 1243. [Google Scholar] [CrossRef]
- Sikivie, P. Axion cosmology. Lect. Notes Phys. 2008, 741, 19. [Google Scholar]
- Marsh, D.J.E. Axion cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Alexander, S.; Yunes, N. Chern–Simons modified general relativity. Phys. Rep. 2009, 480, 1–55. [Google Scholar] [CrossRef]
- Kamionkowski, M.; Kosowsky, A.; Stebbins, A. Statistics of cosmic microwave background polarization. Phys. Rev. D 1997, 55, 7368. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rout, A.; Altschul, B. Primordial Gravitational Wave Birefringence in a de Sitter Background with Chern–Simons Coupling. Universe 2026, 12, 6. https://doi.org/10.3390/universe12010006
Rout A, Altschul B. Primordial Gravitational Wave Birefringence in a de Sitter Background with Chern–Simons Coupling. Universe. 2026; 12(1):6. https://doi.org/10.3390/universe12010006
Chicago/Turabian StyleRout, Abhishek, and Brett Altschul. 2026. "Primordial Gravitational Wave Birefringence in a de Sitter Background with Chern–Simons Coupling" Universe 12, no. 1: 6. https://doi.org/10.3390/universe12010006
APA StyleRout, A., & Altschul, B. (2026). Primordial Gravitational Wave Birefringence in a de Sitter Background with Chern–Simons Coupling. Universe, 12(1), 6. https://doi.org/10.3390/universe12010006

